Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-retr Structured version   Visualization version   GIF version

Definition df-retr 35212
Description: Define the set of retractions on two topological spaces. We say that 𝑅 is a retraction from 𝐽 to 𝐾. or 𝑅 ∈ (𝐽 Retr 𝐾) iff there is an 𝑆 such that 𝑅:𝐽𝐾, 𝑆:𝐾𝐽 are continuous functions called the retraction and section respectively, and their composite 𝑅𝑆 is homotopic to the identity map. If a retraction exists, we say 𝐽 is a retract of 𝐾. (This terminology is borrowed from HoTT and appears to be nonstandard, although it has similaries to the concept of retract in the category of topological spaces and to a deformation retract in general topology.) Two topological spaces that are retracts of each other are called homotopy equivalent. (Contributed by Mario Carneiro, 11-Feb-2015.)
Assertion
Ref Expression
df-retr Retr = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑟 ∈ (𝑗 Cn 𝑘) ∣ ∃𝑠 ∈ (𝑘 Cn 𝑗)((𝑟𝑠)(𝑗 Htpy 𝑗)( I ↾ 𝑗)) ≠ ∅})
Distinct variable group:   𝑗,𝑘,𝑟,𝑠

Detailed syntax breakdown of Definition df-retr
StepHypRef Expression
1 cretr 35211 . 2 class Retr
2 vj . . 3 setvar 𝑗
3 vk . . 3 setvar 𝑘
4 ctop 22787 . . 3 class Top
5 vr . . . . . . . . 9 setvar 𝑟
65cv 1539 . . . . . . . 8 class 𝑟
7 vs . . . . . . . . 9 setvar 𝑠
87cv 1539 . . . . . . . 8 class 𝑠
96, 8ccom 5645 . . . . . . 7 class (𝑟𝑠)
10 cid 5535 . . . . . . . 8 class I
112cv 1539 . . . . . . . . 9 class 𝑗
1211cuni 4874 . . . . . . . 8 class 𝑗
1310, 12cres 5643 . . . . . . 7 class ( I ↾ 𝑗)
14 chtpy 24873 . . . . . . . 8 class Htpy
1511, 11, 14co 7390 . . . . . . 7 class (𝑗 Htpy 𝑗)
169, 13, 15co 7390 . . . . . 6 class ((𝑟𝑠)(𝑗 Htpy 𝑗)( I ↾ 𝑗))
17 c0 4299 . . . . . 6 class
1816, 17wne 2926 . . . . 5 wff ((𝑟𝑠)(𝑗 Htpy 𝑗)( I ↾ 𝑗)) ≠ ∅
193cv 1539 . . . . . 6 class 𝑘
20 ccn 23118 . . . . . 6 class Cn
2119, 11, 20co 7390 . . . . 5 class (𝑘 Cn 𝑗)
2218, 7, 21wrex 3054 . . . 4 wff 𝑠 ∈ (𝑘 Cn 𝑗)((𝑟𝑠)(𝑗 Htpy 𝑗)( I ↾ 𝑗)) ≠ ∅
2311, 19, 20co 7390 . . . 4 class (𝑗 Cn 𝑘)
2422, 5, 23crab 3408 . . 3 class {𝑟 ∈ (𝑗 Cn 𝑘) ∣ ∃𝑠 ∈ (𝑘 Cn 𝑗)((𝑟𝑠)(𝑗 Htpy 𝑗)( I ↾ 𝑗)) ≠ ∅}
252, 3, 4, 4, 24cmpo 7392 . 2 class (𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑟 ∈ (𝑗 Cn 𝑘) ∣ ∃𝑠 ∈ (𝑘 Cn 𝑗)((𝑟𝑠)(𝑗 Htpy 𝑗)( I ↾ 𝑗)) ≠ ∅})
261, 25wceq 1540 1 wff Retr = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑟 ∈ (𝑗 Cn 𝑘) ∣ ∃𝑠 ∈ (𝑘 Cn 𝑗)((𝑟𝑠)(𝑗 Htpy 𝑗)( I ↾ 𝑗)) ≠ ∅})
Colors of variables: wff setvar class
This definition is referenced by: (None)
  Copyright terms: Public domain W3C validator