Detailed syntax breakdown of Definition df-retr
Step | Hyp | Ref
| Expression |
1 | | cretr 33179 |
. 2
class
Retr |
2 | | vj |
. . 3
setvar 𝑗 |
3 | | vk |
. . 3
setvar 𝑘 |
4 | | ctop 22042 |
. . 3
class
Top |
5 | | vr |
. . . . . . . . 9
setvar 𝑟 |
6 | 5 | cv 1538 |
. . . . . . . 8
class 𝑟 |
7 | | vs |
. . . . . . . . 9
setvar 𝑠 |
8 | 7 | cv 1538 |
. . . . . . . 8
class 𝑠 |
9 | 6, 8 | ccom 5593 |
. . . . . . 7
class (𝑟 ∘ 𝑠) |
10 | | cid 5488 |
. . . . . . . 8
class
I |
11 | 2 | cv 1538 |
. . . . . . . . 9
class 𝑗 |
12 | 11 | cuni 4839 |
. . . . . . . 8
class ∪ 𝑗 |
13 | 10, 12 | cres 5591 |
. . . . . . 7
class ( I
↾ ∪ 𝑗) |
14 | | chtpy 24130 |
. . . . . . . 8
class
Htpy |
15 | 11, 11, 14 | co 7275 |
. . . . . . 7
class (𝑗 Htpy 𝑗) |
16 | 9, 13, 15 | co 7275 |
. . . . . 6
class ((𝑟 ∘ 𝑠)(𝑗 Htpy 𝑗)( I ↾ ∪
𝑗)) |
17 | | c0 4256 |
. . . . . 6
class
∅ |
18 | 16, 17 | wne 2943 |
. . . . 5
wff ((𝑟 ∘ 𝑠)(𝑗 Htpy 𝑗)( I ↾ ∪
𝑗)) ≠
∅ |
19 | 3 | cv 1538 |
. . . . . 6
class 𝑘 |
20 | | ccn 22375 |
. . . . . 6
class
Cn |
21 | 19, 11, 20 | co 7275 |
. . . . 5
class (𝑘 Cn 𝑗) |
22 | 18, 7, 21 | wrex 3065 |
. . . 4
wff
∃𝑠 ∈
(𝑘 Cn 𝑗)((𝑟 ∘ 𝑠)(𝑗 Htpy 𝑗)( I ↾ ∪
𝑗)) ≠
∅ |
23 | 11, 19, 20 | co 7275 |
. . . 4
class (𝑗 Cn 𝑘) |
24 | 22, 5, 23 | crab 3068 |
. . 3
class {𝑟 ∈ (𝑗 Cn 𝑘) ∣ ∃𝑠 ∈ (𝑘 Cn 𝑗)((𝑟 ∘ 𝑠)(𝑗 Htpy 𝑗)( I ↾ ∪
𝑗)) ≠
∅} |
25 | 2, 3, 4, 4, 24 | cmpo 7277 |
. 2
class (𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑟 ∈ (𝑗 Cn 𝑘) ∣ ∃𝑠 ∈ (𝑘 Cn 𝑗)((𝑟 ∘ 𝑠)(𝑗 Htpy 𝑗)( I ↾ ∪
𝑗)) ≠
∅}) |
26 | 1, 25 | wceq 1539 |
1
wff Retr =
(𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑟 ∈ (𝑗 Cn 𝑘) ∣ ∃𝑠 ∈ (𝑘 Cn 𝑗)((𝑟 ∘ 𝑠)(𝑗 Htpy 𝑗)( I ↾ ∪
𝑗)) ≠
∅}) |