Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-retr Structured version   Visualization version   GIF version

Definition df-retr 31799
Description: Define the set of retractions on two topological spaces. We say that 𝑅 is a retraction from 𝐽 to 𝐾. or 𝑅 ∈ (𝐽 Retr 𝐾) iff there is an 𝑆 such that 𝑅:𝐽𝐾, 𝑆:𝐾𝐽 are continuous functions called the retraction and section respectively, and their composite 𝑅𝑆 is homotopic to the identity map. If a retraction exists, we say 𝐽 is a retract of 𝐾. (This terminology is borrowed from HoTT and appears to be nonstandard, although it has similaries to the concept of retract in the category of topological spaces and to a deformation retract in general topology.) Two topological spaces that are retracts of each other are called homotopy equivalent. (Contributed by Mario Carneiro, 11-Feb-2015.)
Assertion
Ref Expression
df-retr Retr = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑟 ∈ (𝑗 Cn 𝑘) ∣ ∃𝑠 ∈ (𝑘 Cn 𝑗)((𝑟𝑠)(𝑗 Htpy 𝑗)( I ↾ 𝑗)) ≠ ∅})
Distinct variable group:   𝑗,𝑘,𝑟,𝑠

Detailed syntax breakdown of Definition df-retr
StepHypRef Expression
1 cretr 31798 . 2 class Retr
2 vj . . 3 setvar 𝑗
3 vk . . 3 setvar 𝑘
4 ctop 21105 . . 3 class Top
5 vr . . . . . . . . 9 setvar 𝑟
65cv 1600 . . . . . . . 8 class 𝑟
7 vs . . . . . . . . 9 setvar 𝑠
87cv 1600 . . . . . . . 8 class 𝑠
96, 8ccom 5359 . . . . . . 7 class (𝑟𝑠)
10 cid 5260 . . . . . . . 8 class I
112cv 1600 . . . . . . . . 9 class 𝑗
1211cuni 4671 . . . . . . . 8 class 𝑗
1310, 12cres 5357 . . . . . . 7 class ( I ↾ 𝑗)
14 chtpy 23174 . . . . . . . 8 class Htpy
1511, 11, 14co 6922 . . . . . . 7 class (𝑗 Htpy 𝑗)
169, 13, 15co 6922 . . . . . 6 class ((𝑟𝑠)(𝑗 Htpy 𝑗)( I ↾ 𝑗))
17 c0 4140 . . . . . 6 class
1816, 17wne 2968 . . . . 5 wff ((𝑟𝑠)(𝑗 Htpy 𝑗)( I ↾ 𝑗)) ≠ ∅
193cv 1600 . . . . . 6 class 𝑘
20 ccn 21436 . . . . . 6 class Cn
2119, 11, 20co 6922 . . . . 5 class (𝑘 Cn 𝑗)
2218, 7, 21wrex 3090 . . . 4 wff 𝑠 ∈ (𝑘 Cn 𝑗)((𝑟𝑠)(𝑗 Htpy 𝑗)( I ↾ 𝑗)) ≠ ∅
2311, 19, 20co 6922 . . . 4 class (𝑗 Cn 𝑘)
2422, 5, 23crab 3093 . . 3 class {𝑟 ∈ (𝑗 Cn 𝑘) ∣ ∃𝑠 ∈ (𝑘 Cn 𝑗)((𝑟𝑠)(𝑗 Htpy 𝑗)( I ↾ 𝑗)) ≠ ∅}
252, 3, 4, 4, 24cmpt2 6924 . 2 class (𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑟 ∈ (𝑗 Cn 𝑘) ∣ ∃𝑠 ∈ (𝑘 Cn 𝑗)((𝑟𝑠)(𝑗 Htpy 𝑗)( I ↾ 𝑗)) ≠ ∅})
261, 25wceq 1601 1 wff Retr = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑟 ∈ (𝑗 Cn 𝑘) ∣ ∃𝑠 ∈ (𝑘 Cn 𝑗)((𝑟𝑠)(𝑗 Htpy 𝑗)( I ↾ 𝑗)) ≠ ∅})
Colors of variables: wff setvar class
This definition is referenced by: (None)
  Copyright terms: Public domain W3C validator