Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-retr Structured version   Visualization version   GIF version

Definition df-retr 34507
Description: Define the set of retractions on two topological spaces. We say that 𝑅 is a retraction from 𝐽 to 𝐾. or 𝑅 ∈ (𝐽 Retr 𝐾) iff there is an 𝑆 such that 𝑅:𝐽𝐾, 𝑆:𝐾𝐽 are continuous functions called the retraction and section respectively, and their composite 𝑅𝑆 is homotopic to the identity map. If a retraction exists, we say 𝐽 is a retract of 𝐾. (This terminology is borrowed from HoTT and appears to be nonstandard, although it has similaries to the concept of retract in the category of topological spaces and to a deformation retract in general topology.) Two topological spaces that are retracts of each other are called homotopy equivalent. (Contributed by Mario Carneiro, 11-Feb-2015.)
Assertion
Ref Expression
df-retr Retr = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑟 ∈ (𝑗 Cn 𝑘) ∣ ∃𝑠 ∈ (𝑘 Cn 𝑗)((𝑟𝑠)(𝑗 Htpy 𝑗)( I ↾ 𝑗)) ≠ ∅})
Distinct variable group:   𝑗,𝑘,𝑟,𝑠

Detailed syntax breakdown of Definition df-retr
StepHypRef Expression
1 cretr 34506 . 2 class Retr
2 vj . . 3 setvar 𝑗
3 vk . . 3 setvar 𝑘
4 ctop 22615 . . 3 class Top
5 vr . . . . . . . . 9 setvar 𝑟
65cv 1538 . . . . . . . 8 class 𝑟
7 vs . . . . . . . . 9 setvar 𝑠
87cv 1538 . . . . . . . 8 class 𝑠
96, 8ccom 5679 . . . . . . 7 class (𝑟𝑠)
10 cid 5572 . . . . . . . 8 class I
112cv 1538 . . . . . . . . 9 class 𝑗
1211cuni 4907 . . . . . . . 8 class 𝑗
1310, 12cres 5677 . . . . . . 7 class ( I ↾ 𝑗)
14 chtpy 24713 . . . . . . . 8 class Htpy
1511, 11, 14co 7411 . . . . . . 7 class (𝑗 Htpy 𝑗)
169, 13, 15co 7411 . . . . . 6 class ((𝑟𝑠)(𝑗 Htpy 𝑗)( I ↾ 𝑗))
17 c0 4321 . . . . . 6 class
1816, 17wne 2938 . . . . 5 wff ((𝑟𝑠)(𝑗 Htpy 𝑗)( I ↾ 𝑗)) ≠ ∅
193cv 1538 . . . . . 6 class 𝑘
20 ccn 22948 . . . . . 6 class Cn
2119, 11, 20co 7411 . . . . 5 class (𝑘 Cn 𝑗)
2218, 7, 21wrex 3068 . . . 4 wff 𝑠 ∈ (𝑘 Cn 𝑗)((𝑟𝑠)(𝑗 Htpy 𝑗)( I ↾ 𝑗)) ≠ ∅
2311, 19, 20co 7411 . . . 4 class (𝑗 Cn 𝑘)
2422, 5, 23crab 3430 . . 3 class {𝑟 ∈ (𝑗 Cn 𝑘) ∣ ∃𝑠 ∈ (𝑘 Cn 𝑗)((𝑟𝑠)(𝑗 Htpy 𝑗)( I ↾ 𝑗)) ≠ ∅}
252, 3, 4, 4, 24cmpo 7413 . 2 class (𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑟 ∈ (𝑗 Cn 𝑘) ∣ ∃𝑠 ∈ (𝑘 Cn 𝑗)((𝑟𝑠)(𝑗 Htpy 𝑗)( I ↾ 𝑗)) ≠ ∅})
261, 25wceq 1539 1 wff Retr = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑟 ∈ (𝑗 Cn 𝑘) ∣ ∃𝑠 ∈ (𝑘 Cn 𝑗)((𝑟𝑠)(𝑗 Htpy 𝑗)( I ↾ 𝑗)) ≠ ∅})
Colors of variables: wff setvar class
This definition is referenced by: (None)
  Copyright terms: Public domain W3C validator