Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > luklem2 | Structured version Visualization version GIF version |
Description: Used to rederive standard propositional axioms from Lukasiewicz'. (Contributed by NM, 22-Dec-2002.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
luklem2 | ⊢ ((𝜑 → ¬ 𝜓) → (((𝜑 → 𝜒) → 𝜃) → (𝜓 → 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | luk-1 1659 | . . 3 ⊢ ((𝜑 → ¬ 𝜓) → ((¬ 𝜓 → 𝜒) → (𝜑 → 𝜒))) | |
2 | luk-3 1661 | . . . 4 ⊢ (𝜓 → (¬ 𝜓 → 𝜒)) | |
3 | luk-1 1659 | . . . 4 ⊢ ((𝜓 → (¬ 𝜓 → 𝜒)) → (((¬ 𝜓 → 𝜒) → (𝜑 → 𝜒)) → (𝜓 → (𝜑 → 𝜒)))) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ (((¬ 𝜓 → 𝜒) → (𝜑 → 𝜒)) → (𝜓 → (𝜑 → 𝜒))) |
5 | 1, 4 | luklem1 1662 | . 2 ⊢ ((𝜑 → ¬ 𝜓) → (𝜓 → (𝜑 → 𝜒))) |
6 | luk-1 1659 | . 2 ⊢ ((𝜓 → (𝜑 → 𝜒)) → (((𝜑 → 𝜒) → 𝜃) → (𝜓 → 𝜃))) | |
7 | 5, 6 | luklem1 1662 | 1 ⊢ ((𝜑 → ¬ 𝜓) → (((𝜑 → 𝜒) → 𝜃) → (𝜓 → 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: luklem3 1664 luklem6 1667 ax3 1672 |
Copyright terms: Public domain | W3C validator |