Proof of Theorem luklem6
Step | Hyp | Ref
| Expression |
1 | | luk-1 1659 |
. 2
⊢ ((𝜑 → (𝜑 → 𝜓)) → (((𝜑 → 𝜓) → 𝜓) → (𝜑 → 𝜓))) |
2 | | luklem5 1666 |
. . . . . 6
⊢ (¬
(𝜑 → 𝜓) → (¬ 𝜓 → ¬ (𝜑 → 𝜓))) |
3 | | luklem2 1663 |
. . . . . . 7
⊢ ((¬
𝜓 → ¬ (𝜑 → 𝜓)) → (((¬ 𝜓 → 𝜓) → 𝜓) → ((𝜑 → 𝜓) → 𝜓))) |
4 | | luklem4 1665 |
. . . . . . 7
⊢ ((((¬
𝜓 → 𝜓) → 𝜓) → ((𝜑 → 𝜓) → 𝜓)) → ((𝜑 → 𝜓) → 𝜓)) |
5 | 3, 4 | luklem1 1662 |
. . . . . 6
⊢ ((¬
𝜓 → ¬ (𝜑 → 𝜓)) → ((𝜑 → 𝜓) → 𝜓)) |
6 | 2, 5 | luklem1 1662 |
. . . . 5
⊢ (¬
(𝜑 → 𝜓) → ((𝜑 → 𝜓) → 𝜓)) |
7 | | luk-1 1659 |
. . . . 5
⊢ ((¬
(𝜑 → 𝜓) → ((𝜑 → 𝜓) → 𝜓)) → ((((𝜑 → 𝜓) → 𝜓) → (𝜑 → 𝜓)) → (¬ (𝜑 → 𝜓) → (𝜑 → 𝜓)))) |
8 | 6, 7 | ax-mp 5 |
. . . 4
⊢ ((((𝜑 → 𝜓) → 𝜓) → (𝜑 → 𝜓)) → (¬ (𝜑 → 𝜓) → (𝜑 → 𝜓))) |
9 | | luk-1 1659 |
. . . 4
⊢
(((((𝜑 → 𝜓) → 𝜓) → (𝜑 → 𝜓)) → (¬ (𝜑 → 𝜓) → (𝜑 → 𝜓))) → (((¬ (𝜑 → 𝜓) → (𝜑 → 𝜓)) → (𝜑 → 𝜓)) → ((((𝜑 → 𝜓) → 𝜓) → (𝜑 → 𝜓)) → (𝜑 → 𝜓)))) |
10 | 8, 9 | ax-mp 5 |
. . 3
⊢ (((¬
(𝜑 → 𝜓) → (𝜑 → 𝜓)) → (𝜑 → 𝜓)) → ((((𝜑 → 𝜓) → 𝜓) → (𝜑 → 𝜓)) → (𝜑 → 𝜓))) |
11 | | luklem4 1665 |
. . 3
⊢ ((((¬
(𝜑 → 𝜓) → (𝜑 → 𝜓)) → (𝜑 → 𝜓)) → ((((𝜑 → 𝜓) → 𝜓) → (𝜑 → 𝜓)) → (𝜑 → 𝜓))) → ((((𝜑 → 𝜓) → 𝜓) → (𝜑 → 𝜓)) → (𝜑 → 𝜓))) |
12 | 10, 11 | ax-mp 5 |
. 2
⊢ ((((𝜑 → 𝜓) → 𝜓) → (𝜑 → 𝜓)) → (𝜑 → 𝜓)) |
13 | 1, 12 | luklem1 1662 |
1
⊢ ((𝜑 → (𝜑 → 𝜓)) → (𝜑 → 𝜓)) |