Proof of Theorem luklem6
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | luk-1 1655 | . 2
⊢ ((𝜑 → (𝜑 → 𝜓)) → (((𝜑 → 𝜓) → 𝜓) → (𝜑 → 𝜓))) | 
| 2 |  | luklem5 1662 | . . . . . 6
⊢ (¬
(𝜑 → 𝜓) → (¬ 𝜓 → ¬ (𝜑 → 𝜓))) | 
| 3 |  | luklem2 1659 | . . . . . . 7
⊢ ((¬
𝜓 → ¬ (𝜑 → 𝜓)) → (((¬ 𝜓 → 𝜓) → 𝜓) → ((𝜑 → 𝜓) → 𝜓))) | 
| 4 |  | luklem4 1661 | . . . . . . 7
⊢ ((((¬
𝜓 → 𝜓) → 𝜓) → ((𝜑 → 𝜓) → 𝜓)) → ((𝜑 → 𝜓) → 𝜓)) | 
| 5 | 3, 4 | luklem1 1658 | . . . . . 6
⊢ ((¬
𝜓 → ¬ (𝜑 → 𝜓)) → ((𝜑 → 𝜓) → 𝜓)) | 
| 6 | 2, 5 | luklem1 1658 | . . . . 5
⊢ (¬
(𝜑 → 𝜓) → ((𝜑 → 𝜓) → 𝜓)) | 
| 7 |  | luk-1 1655 | . . . . 5
⊢ ((¬
(𝜑 → 𝜓) → ((𝜑 → 𝜓) → 𝜓)) → ((((𝜑 → 𝜓) → 𝜓) → (𝜑 → 𝜓)) → (¬ (𝜑 → 𝜓) → (𝜑 → 𝜓)))) | 
| 8 | 6, 7 | ax-mp 5 | . . . 4
⊢ ((((𝜑 → 𝜓) → 𝜓) → (𝜑 → 𝜓)) → (¬ (𝜑 → 𝜓) → (𝜑 → 𝜓))) | 
| 9 |  | luk-1 1655 | . . . 4
⊢
(((((𝜑 → 𝜓) → 𝜓) → (𝜑 → 𝜓)) → (¬ (𝜑 → 𝜓) → (𝜑 → 𝜓))) → (((¬ (𝜑 → 𝜓) → (𝜑 → 𝜓)) → (𝜑 → 𝜓)) → ((((𝜑 → 𝜓) → 𝜓) → (𝜑 → 𝜓)) → (𝜑 → 𝜓)))) | 
| 10 | 8, 9 | ax-mp 5 | . . 3
⊢ (((¬
(𝜑 → 𝜓) → (𝜑 → 𝜓)) → (𝜑 → 𝜓)) → ((((𝜑 → 𝜓) → 𝜓) → (𝜑 → 𝜓)) → (𝜑 → 𝜓))) | 
| 11 |  | luklem4 1661 | . . 3
⊢ ((((¬
(𝜑 → 𝜓) → (𝜑 → 𝜓)) → (𝜑 → 𝜓)) → ((((𝜑 → 𝜓) → 𝜓) → (𝜑 → 𝜓)) → (𝜑 → 𝜓))) → ((((𝜑 → 𝜓) → 𝜓) → (𝜑 → 𝜓)) → (𝜑 → 𝜓))) | 
| 12 | 10, 11 | ax-mp 5 | . 2
⊢ ((((𝜑 → 𝜓) → 𝜓) → (𝜑 → 𝜓)) → (𝜑 → 𝜓)) | 
| 13 | 1, 12 | luklem1 1658 | 1
⊢ ((𝜑 → (𝜑 → 𝜓)) → (𝜑 → 𝜓)) |