Proof of Theorem merlem3
Step | Hyp | Ref
| Expression |
1 | | merlem2 1651 |
. . . 4
⊢ (((¬
𝜒 → ¬ 𝜒) → (¬ 𝜒 → ¬ 𝜒)) → ((𝜑 → 𝜑) → (¬ 𝜒 → ¬ 𝜒))) |
2 | | merlem2 1651 |
. . . 4
⊢ ((((¬
𝜒 → ¬ 𝜒) → (¬ 𝜒 → ¬ 𝜒)) → ((𝜑 → 𝜑) → (¬ 𝜒 → ¬ 𝜒))) → ((((𝜒 → 𝜑) → (¬ 𝜓 → ¬ 𝜓)) → 𝜓) → ((𝜑 → 𝜑) → (¬ 𝜒 → ¬ 𝜒)))) |
3 | 1, 2 | ax-mp 5 |
. . 3
⊢ ((((𝜒 → 𝜑) → (¬ 𝜓 → ¬ 𝜓)) → 𝜓) → ((𝜑 → 𝜑) → (¬ 𝜒 → ¬ 𝜒))) |
4 | | meredith 1649 |
. . 3
⊢
(((((𝜒 → 𝜑) → (¬ 𝜓 → ¬ 𝜓)) → 𝜓) → ((𝜑 → 𝜑) → (¬ 𝜒 → ¬ 𝜒))) → ((((𝜑 → 𝜑) → (¬ 𝜒 → ¬ 𝜒)) → 𝜒) → (𝜓 → 𝜒))) |
5 | 3, 4 | ax-mp 5 |
. 2
⊢ ((((𝜑 → 𝜑) → (¬ 𝜒 → ¬ 𝜒)) → 𝜒) → (𝜓 → 𝜒)) |
6 | | meredith 1649 |
. 2
⊢
(((((𝜑 → 𝜑) → (¬ 𝜒 → ¬ 𝜒)) → 𝜒) → (𝜓 → 𝜒)) → (((𝜓 → 𝜒) → 𝜑) → (𝜒 → 𝜑))) |
7 | 5, 6 | ax-mp 5 |
1
⊢ (((𝜓 → 𝜒) → 𝜑) → (𝜒 → 𝜑)) |