Proof of Theorem merlem3
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | merlem2 1642 | . . . 4
⊢ (((¬
𝜒 → ¬ 𝜒) → (¬ 𝜒 → ¬ 𝜒)) → ((𝜑 → 𝜑) → (¬ 𝜒 → ¬ 𝜒))) | 
| 2 |  | merlem2 1642 | . . . 4
⊢ ((((¬
𝜒 → ¬ 𝜒) → (¬ 𝜒 → ¬ 𝜒)) → ((𝜑 → 𝜑) → (¬ 𝜒 → ¬ 𝜒))) → ((((𝜒 → 𝜑) → (¬ 𝜓 → ¬ 𝜓)) → 𝜓) → ((𝜑 → 𝜑) → (¬ 𝜒 → ¬ 𝜒)))) | 
| 3 | 1, 2 | ax-mp 5 | . . 3
⊢ ((((𝜒 → 𝜑) → (¬ 𝜓 → ¬ 𝜓)) → 𝜓) → ((𝜑 → 𝜑) → (¬ 𝜒 → ¬ 𝜒))) | 
| 4 |  | meredith 1640 | . . 3
⊢
(((((𝜒 → 𝜑) → (¬ 𝜓 → ¬ 𝜓)) → 𝜓) → ((𝜑 → 𝜑) → (¬ 𝜒 → ¬ 𝜒))) → ((((𝜑 → 𝜑) → (¬ 𝜒 → ¬ 𝜒)) → 𝜒) → (𝜓 → 𝜒))) | 
| 5 | 3, 4 | ax-mp 5 | . 2
⊢ ((((𝜑 → 𝜑) → (¬ 𝜒 → ¬ 𝜒)) → 𝜒) → (𝜓 → 𝜒)) | 
| 6 |  | meredith 1640 | . 2
⊢
(((((𝜑 → 𝜑) → (¬ 𝜒 → ¬ 𝜒)) → 𝜒) → (𝜓 → 𝜒)) → (((𝜓 → 𝜒) → 𝜑) → (𝜒 → 𝜑))) | 
| 7 | 5, 6 | ax-mp 5 | 1
⊢ (((𝜓 → 𝜒) → 𝜑) → (𝜒 → 𝜑)) |