Proof of Theorem minimp-ax2
Step | Hyp | Ref
| Expression |
1 | | minimp-ax2c 1632 |
. 2
⊢ ((𝜑 → 𝜓) → ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → 𝜒))) |
2 | | minimp-ax2c 1632 |
. . 3
⊢ (((𝜑 → 𝜓) → (𝜑 → (𝜓 → 𝜒))) → (((𝜑 → 𝜓) → ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → 𝜒))) → ((𝜑 → 𝜓) → (𝜑 → 𝜒)))) |
3 | | minimp-syllsimp 1630 |
. . 3
⊢ ((((𝜑 → 𝜓) → (𝜑 → (𝜓 → 𝜒))) → (((𝜑 → 𝜓) → ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → 𝜒))) → ((𝜑 → 𝜓) → (𝜑 → 𝜒)))) → ((𝜑 → (𝜓 → 𝜒)) → (((𝜑 → 𝜓) → ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → 𝜒))) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))))) |
4 | 2, 3 | ax-mp 5 |
. 2
⊢ ((𝜑 → (𝜓 → 𝜒)) → (((𝜑 → 𝜓) → ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → 𝜒))) → ((𝜑 → 𝜓) → (𝜑 → 𝜒)))) |
5 | | minimp-ax2c 1632 |
. . 3
⊢ (((𝜑 → (𝜓 → 𝜒)) → ((𝜑 → 𝜓) → ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → 𝜒)))) → (((𝜑 → (𝜓 → 𝜒)) → (((𝜑 → 𝜓) → ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → 𝜒))) → ((𝜑 → 𝜓) → (𝜑 → 𝜒)))) → ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))))) |
6 | | minimp-syllsimp 1630 |
. . 3
⊢ ((((𝜑 → (𝜓 → 𝜒)) → ((𝜑 → 𝜓) → ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → 𝜒)))) → (((𝜑 → (𝜓 → 𝜒)) → (((𝜑 → 𝜓) → ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → 𝜒))) → ((𝜑 → 𝜓) → (𝜑 → 𝜒)))) → ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))))) → (((𝜑 → 𝜓) → ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → 𝜒))) → (((𝜑 → (𝜓 → 𝜒)) → (((𝜑 → 𝜓) → ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → 𝜒))) → ((𝜑 → 𝜓) → (𝜑 → 𝜒)))) → ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒)))))) |
7 | 5, 6 | ax-mp 5 |
. 2
⊢ (((𝜑 → 𝜓) → ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → 𝜒))) → (((𝜑 → (𝜓 → 𝜒)) → (((𝜑 → 𝜓) → ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → 𝜒))) → ((𝜑 → 𝜓) → (𝜑 → 𝜒)))) → ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))))) |
8 | 1, 4, 7 | mp2 9 |
1
⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))) |