MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minimp-ax2 Structured version   Visualization version   GIF version

Theorem minimp-ax2 1633
Description: Derivation of ax-2 7 from ax-mp 5 and minimp 1629. (Contributed by BJ, 4-Apr-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
minimp-ax2 ((𝜑 → (𝜓𝜒)) → ((𝜑𝜓) → (𝜑𝜒)))

Proof of Theorem minimp-ax2
StepHypRef Expression
1 minimp-ax2c 1632 . 2 ((𝜑𝜓) → ((𝜑 → (𝜓𝜒)) → (𝜑𝜒)))
2 minimp-ax2c 1632 . . 3 (((𝜑𝜓) → (𝜑 → (𝜓𝜒))) → (((𝜑𝜓) → ((𝜑 → (𝜓𝜒)) → (𝜑𝜒))) → ((𝜑𝜓) → (𝜑𝜒))))
3 minimp-syllsimp 1630 . . 3 ((((𝜑𝜓) → (𝜑 → (𝜓𝜒))) → (((𝜑𝜓) → ((𝜑 → (𝜓𝜒)) → (𝜑𝜒))) → ((𝜑𝜓) → (𝜑𝜒)))) → ((𝜑 → (𝜓𝜒)) → (((𝜑𝜓) → ((𝜑 → (𝜓𝜒)) → (𝜑𝜒))) → ((𝜑𝜓) → (𝜑𝜒)))))
42, 3ax-mp 5 . 2 ((𝜑 → (𝜓𝜒)) → (((𝜑𝜓) → ((𝜑 → (𝜓𝜒)) → (𝜑𝜒))) → ((𝜑𝜓) → (𝜑𝜒))))
5 minimp-ax2c 1632 . . 3 (((𝜑 → (𝜓𝜒)) → ((𝜑𝜓) → ((𝜑 → (𝜓𝜒)) → (𝜑𝜒)))) → (((𝜑 → (𝜓𝜒)) → (((𝜑𝜓) → ((𝜑 → (𝜓𝜒)) → (𝜑𝜒))) → ((𝜑𝜓) → (𝜑𝜒)))) → ((𝜑 → (𝜓𝜒)) → ((𝜑𝜓) → (𝜑𝜒)))))
6 minimp-syllsimp 1630 . . 3 ((((𝜑 → (𝜓𝜒)) → ((𝜑𝜓) → ((𝜑 → (𝜓𝜒)) → (𝜑𝜒)))) → (((𝜑 → (𝜓𝜒)) → (((𝜑𝜓) → ((𝜑 → (𝜓𝜒)) → (𝜑𝜒))) → ((𝜑𝜓) → (𝜑𝜒)))) → ((𝜑 → (𝜓𝜒)) → ((𝜑𝜓) → (𝜑𝜒))))) → (((𝜑𝜓) → ((𝜑 → (𝜓𝜒)) → (𝜑𝜒))) → (((𝜑 → (𝜓𝜒)) → (((𝜑𝜓) → ((𝜑 → (𝜓𝜒)) → (𝜑𝜒))) → ((𝜑𝜓) → (𝜑𝜒)))) → ((𝜑 → (𝜓𝜒)) → ((𝜑𝜓) → (𝜑𝜒))))))
75, 6ax-mp 5 . 2 (((𝜑𝜓) → ((𝜑 → (𝜓𝜒)) → (𝜑𝜒))) → (((𝜑 → (𝜓𝜒)) → (((𝜑𝜓) → ((𝜑 → (𝜓𝜒)) → (𝜑𝜒))) → ((𝜑𝜓) → (𝜑𝜒)))) → ((𝜑 → (𝜓𝜒)) → ((𝜑𝜓) → (𝜑𝜒)))))
81, 4, 7mp2 9 1 ((𝜑 → (𝜓𝜒)) → ((𝜑𝜓) → (𝜑𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  minimp-pm2.43  1634
  Copyright terms: Public domain W3C validator