Proof of Theorem minimp-ax2
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | minimp-ax2c 1623 | . 2
⊢ ((𝜑 → 𝜓) → ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → 𝜒))) | 
| 2 |  | minimp-ax2c 1623 | . . 3
⊢ (((𝜑 → 𝜓) → (𝜑 → (𝜓 → 𝜒))) → (((𝜑 → 𝜓) → ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → 𝜒))) → ((𝜑 → 𝜓) → (𝜑 → 𝜒)))) | 
| 3 |  | minimp-syllsimp 1621 | . . 3
⊢ ((((𝜑 → 𝜓) → (𝜑 → (𝜓 → 𝜒))) → (((𝜑 → 𝜓) → ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → 𝜒))) → ((𝜑 → 𝜓) → (𝜑 → 𝜒)))) → ((𝜑 → (𝜓 → 𝜒)) → (((𝜑 → 𝜓) → ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → 𝜒))) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))))) | 
| 4 | 2, 3 | ax-mp 5 | . 2
⊢ ((𝜑 → (𝜓 → 𝜒)) → (((𝜑 → 𝜓) → ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → 𝜒))) → ((𝜑 → 𝜓) → (𝜑 → 𝜒)))) | 
| 5 |  | minimp-ax2c 1623 | . . 3
⊢ (((𝜑 → (𝜓 → 𝜒)) → ((𝜑 → 𝜓) → ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → 𝜒)))) → (((𝜑 → (𝜓 → 𝜒)) → (((𝜑 → 𝜓) → ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → 𝜒))) → ((𝜑 → 𝜓) → (𝜑 → 𝜒)))) → ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))))) | 
| 6 |  | minimp-syllsimp 1621 | . . 3
⊢ ((((𝜑 → (𝜓 → 𝜒)) → ((𝜑 → 𝜓) → ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → 𝜒)))) → (((𝜑 → (𝜓 → 𝜒)) → (((𝜑 → 𝜓) → ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → 𝜒))) → ((𝜑 → 𝜓) → (𝜑 → 𝜒)))) → ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))))) → (((𝜑 → 𝜓) → ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → 𝜒))) → (((𝜑 → (𝜓 → 𝜒)) → (((𝜑 → 𝜓) → ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → 𝜒))) → ((𝜑 → 𝜓) → (𝜑 → 𝜒)))) → ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒)))))) | 
| 7 | 5, 6 | ax-mp 5 | . 2
⊢ (((𝜑 → 𝜓) → ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → 𝜒))) → (((𝜑 → (𝜓 → 𝜒)) → (((𝜑 → 𝜓) → ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → 𝜒))) → ((𝜑 → 𝜓) → (𝜑 → 𝜒)))) → ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))))) | 
| 8 | 1, 4, 7 | mp2 9 | 1
⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))) |