NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  cadbi123d Unicode version

Theorem cadbi123d 1383
Description: Equality theorem for adder carry. (Contributed by Mario Carneiro, 4-Sep-2016.)
Hypotheses
Ref Expression
hadbid.1
hadbid.2
hadbid.3
Assertion
Ref Expression
cadbi123d cadd cadd

Proof of Theorem cadbi123d
StepHypRef Expression
1 hadbid.1 . . . 4
2 hadbid.2 . . . 4
31, 2anbi12d 691 . . 3
4 hadbid.3 . . . 4
51, 2xorbi12d 1315 . . . 4  \/_  \/_
64, 5anbi12d 691 . . 3  \/_  \/_
73, 6orbi12d 690 . 2  \/_  \/_
8 df-cad 1381 . 2 cadd  \/_
9 df-cad 1381 . 2 cadd  \/_
107, 8, 93bitr4g 279 1 cadd cadd
Colors of variables: wff setvar class
Syntax hints:   wi 4   wb 176   wo 357   wa 358    \/_ wxo 1304  caddwcad 1379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-xor 1305  df-cad 1381
This theorem is referenced by:  cadbi123i  1385
  Copyright terms: Public domain W3C validator