New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > cadbi123d | GIF version |
Description: Equality theorem for adder carry. (Contributed by Mario Carneiro, 4-Sep-2016.) |
Ref | Expression |
---|---|
hadbid.1 | ⊢ (φ → (ψ ↔ χ)) |
hadbid.2 | ⊢ (φ → (θ ↔ τ)) |
hadbid.3 | ⊢ (φ → (η ↔ ζ)) |
Ref | Expression |
---|---|
cadbi123d | ⊢ (φ → (cadd(ψ, θ, η) ↔ cadd(χ, τ, ζ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hadbid.1 | . . . 4 ⊢ (φ → (ψ ↔ χ)) | |
2 | hadbid.2 | . . . 4 ⊢ (φ → (θ ↔ τ)) | |
3 | 1, 2 | anbi12d 691 | . . 3 ⊢ (φ → ((ψ ∧ θ) ↔ (χ ∧ τ))) |
4 | hadbid.3 | . . . 4 ⊢ (φ → (η ↔ ζ)) | |
5 | 1, 2 | xorbi12d 1315 | . . . 4 ⊢ (φ → ((ψ ⊻ θ) ↔ (χ ⊻ τ))) |
6 | 4, 5 | anbi12d 691 | . . 3 ⊢ (φ → ((η ∧ (ψ ⊻ θ)) ↔ (ζ ∧ (χ ⊻ τ)))) |
7 | 3, 6 | orbi12d 690 | . 2 ⊢ (φ → (((ψ ∧ θ) ∨ (η ∧ (ψ ⊻ θ))) ↔ ((χ ∧ τ) ∨ (ζ ∧ (χ ⊻ τ))))) |
8 | df-cad 1381 | . 2 ⊢ (cadd(ψ, θ, η) ↔ ((ψ ∧ θ) ∨ (η ∧ (ψ ⊻ θ)))) | |
9 | df-cad 1381 | . 2 ⊢ (cadd(χ, τ, ζ) ↔ ((χ ∧ τ) ∨ (ζ ∧ (χ ⊻ τ)))) | |
10 | 7, 8, 9 | 3bitr4g 279 | 1 ⊢ (φ → (cadd(ψ, θ, η) ↔ cadd(χ, τ, ζ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∨ wo 357 ∧ wa 358 ⊻ wxo 1304 caddwcad 1379 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-xor 1305 df-cad 1381 |
This theorem is referenced by: cadbi123i 1385 |
Copyright terms: Public domain | W3C validator |