NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  cadbi123d GIF version

Theorem cadbi123d 1383
Description: Equality theorem for adder carry. (Contributed by Mario Carneiro, 4-Sep-2016.)
Hypotheses
Ref Expression
hadbid.1 (φ → (ψχ))
hadbid.2 (φ → (θτ))
hadbid.3 (φ → (ηζ))
Assertion
Ref Expression
cadbi123d (φ → (cadd(ψ, θ, η) ↔ cadd(χ, τ, ζ)))

Proof of Theorem cadbi123d
StepHypRef Expression
1 hadbid.1 . . . 4 (φ → (ψχ))
2 hadbid.2 . . . 4 (φ → (θτ))
31, 2anbi12d 691 . . 3 (φ → ((ψ θ) ↔ (χ τ)))
4 hadbid.3 . . . 4 (φ → (ηζ))
51, 2xorbi12d 1315 . . . 4 (φ → ((ψθ) ↔ (χτ)))
64, 5anbi12d 691 . . 3 (φ → ((η (ψθ)) ↔ (ζ (χτ))))
73, 6orbi12d 690 . 2 (φ → (((ψ θ) (η (ψθ))) ↔ ((χ τ) (ζ (χτ)))))
8 df-cad 1381 . 2 (cadd(ψ, θ, η) ↔ ((ψ θ) (η (ψθ))))
9 df-cad 1381 . 2 (cadd(χ, τ, ζ) ↔ ((χ τ) (ζ (χτ))))
107, 8, 93bitr4g 279 1 (φ → (cadd(ψ, θ, η) ↔ cadd(χ, τ, ζ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wo 357   wa 358  wxo 1304  caddwcad 1379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-xor 1305  df-cad 1381
This theorem is referenced by:  cadbi123i  1385
  Copyright terms: Public domain W3C validator