| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > nic-mp | Unicode version | ||
| Description: Derive Nicod's rule of
modus ponens using 'nand', from the standard one.
       Although the major and minor premise together also imply  | 
| Ref | Expression | 
|---|---|
| nic-jmin | 
 | 
| nic-jmaj | 
 | 
| Ref | Expression | 
|---|---|
| nic-mp | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nic-jmin | 
. 2
 | |
| 2 | nic-jmaj | 
. . . 4
 | |
| 3 | nannan 1291 | 
. . . 4
 | |
| 4 | 2, 3 | mpbi 199 | 
. . 3
 | 
| 5 | 4 | simprd 449 | 
. 2
 | 
| 6 | 1, 5 | ax-mp 5 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 177 df-an 360 df-nan 1288 | 
| This theorem is referenced by: nic-imp 1440 nic-idlem2 1442 nic-id 1443 nic-swap 1444 nic-isw1 1445 nic-isw2 1446 nic-iimp1 1447 nic-idel 1449 nic-ich 1450 nic-stdmp 1455 nic-luk1 1456 nic-luk2 1457 nic-luk3 1458 lukshefth1 1460 lukshefth2 1461 renicax 1462 | 
| Copyright terms: Public domain | W3C validator |