New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nic-mp | GIF version |
Description: Derive Nicod's rule of modus ponens using 'nand', from the standard one. Although the major and minor premise together also imply χ, this form is necessary for useful derivations from nic-ax 1438. In a pure (standalone) treatment of Nicod's axiom, this theorem would be changed to an axiom ($a statement). (Contributed by Jeff Hoffman, 19-Nov-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nic-jmin | ⊢ φ |
nic-jmaj | ⊢ (φ ⊼ (χ ⊼ ψ)) |
Ref | Expression |
---|---|
nic-mp | ⊢ ψ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nic-jmin | . 2 ⊢ φ | |
2 | nic-jmaj | . . . 4 ⊢ (φ ⊼ (χ ⊼ ψ)) | |
3 | nannan 1291 | . . . 4 ⊢ ((φ ⊼ (χ ⊼ ψ)) ↔ (φ → (χ ∧ ψ))) | |
4 | 2, 3 | mpbi 199 | . . 3 ⊢ (φ → (χ ∧ ψ)) |
5 | 4 | simprd 449 | . 2 ⊢ (φ → ψ) |
6 | 1, 5 | ax-mp 5 | 1 ⊢ ψ |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ⊼ wnan 1287 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 df-nan 1288 |
This theorem is referenced by: nic-imp 1440 nic-idlem2 1442 nic-id 1443 nic-swap 1444 nic-isw1 1445 nic-isw2 1446 nic-iimp1 1447 nic-idel 1449 nic-ich 1450 nic-stdmp 1455 nic-luk1 1456 nic-luk2 1457 nic-luk3 1458 lukshefth1 1460 lukshefth2 1461 renicax 1462 |
Copyright terms: Public domain | W3C validator |