NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  rblem5 Unicode version

Theorem rblem5 1526
Description: Used to rederive the Lukasiewicz axioms from Russell-Bernays'. (Contributed by Anthony Hart, 19-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
rblem5

Proof of Theorem rblem5
StepHypRef Expression
1 rb-ax2 1518 . 2
2 rb-ax4 1520 . . . . 5
3 rb-ax3 1519 . . . . 5
42, 3rbsyl 1521 . . . 4
5 rb-ax4 1520 . . . . . . 7
6 rb-ax3 1519 . . . . . . 7
75, 6rbsyl 1521 . . . . . 6
8 rb-ax2 1518 . . . . . 6
97, 8anmp 1516 . . . . 5
109, 4rblem1 1522 . . . 4
114, 10anmp 1516 . . 3
12 rb-ax4 1520 . . . . 5
13 rb-ax3 1519 . . . . 5
1412, 13rbsyl 1521 . . . 4
15 rb-ax2 1518 . . . 4
1614, 15anmp 1516 . . 3
1711, 16rblem1 1522 . 2
181, 17rbsyl 1521 1
Colors of variables: wff setvar class
Syntax hints:   wn 3   wo 357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360
This theorem is referenced by:  rblem6  1527  rblem7  1528
  Copyright terms: Public domain W3C validator