NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  snidb Unicode version

Theorem snidb 3760
Description: A class is a set iff it is a member of its singleton. (Contributed by NM, 5-Apr-2004.)
Assertion
Ref Expression
snidb

Proof of Theorem snidb
StepHypRef Expression
1 snidg 3759 . 2
2 elex 2868 . 2
31, 2impbii 180 1
Colors of variables: wff setvar class
Syntax hints:   wb 176   wcel 1710  cvv 2860  csn 3738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-sn 3742
This theorem is referenced by:  snid  3761
  Copyright terms: Public domain W3C validator