![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > df-clel | Unicode version |
Description: Define the membership
connective between classes. Theorem 6.3 of
[Quine] p. 41, or Proposition 4.6 of [TakeutiZaring] p. 13, which we
adopt as a definition. See these references for its metalogical
justification. Note that like df-cleq 2346 it extends or "overloads" the
use of the existing membership symbol, but unlike df-cleq 2346 it does not
strengthen the set of valid wffs of logic when the class variables are
replaced with setvar variables (see cleljust 2014), so we don't include
any set theory axiom as a hypothesis. See also comments about the
syntax under df-clab 2340. Alternate definitions of ![]() ![]() ![]() ![]() ![]() This is called the "axiom of membership" by [Levy] p. 338, who treats the theory of classes as an extralogical extension to our logic and set theory axioms. For a general discussion of the theory of classes, see http://us.metamath.org/mpeuni/mmset.html#class. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
df-clel |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA |
. . 3
![]() ![]() | |
2 | cB |
. . 3
![]() ![]() | |
3 | 1, 2 | wcel 1710 |
. 2
![]() ![]() ![]() ![]() |
4 | vx |
. . . . . 6
![]() ![]() | |
5 | 4 | cv 1641 |
. . . . 5
![]() ![]() |
6 | 5, 1 | wceq 1642 |
. . . 4
![]() ![]() ![]() ![]() |
7 | 5, 2 | wcel 1710 |
. . . 4
![]() ![]() ![]() ![]() |
8 | 6, 7 | wa 358 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | 8, 4 | wex 1541 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | 3, 9 | wb 176 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
This definition is referenced by: eleq1 2413 eleq2 2414 clelab 2473 clabel 2474 nfel 2497 nfeld 2504 sbabel 2515 risset 2661 isset 2863 elex 2867 sbcabel 3123 ssel 3267 disjsn 3786 pwpw0 3855 pwsnALT 3882 axcnvprim 4091 axssetprim 4092 axsiprim 4093 axtyplowerprim 4094 axins2prim 4095 axins3prim 4096 dfnnc2 4395 nnsucelrlem1 4424 ncfinraiselem2 4480 ncfinlowerlem1 4482 eqtfinrelk 4486 nnadjoinlem1 4519 nnpweqlem1 4522 srelk 4524 tfinnnlem1 4533 opelxp 4811 mptpreima 5682 composeex 5820 domfnex 5870 ranfnex 5871 transex 5910 refex 5911 antisymex 5912 connexex 5913 foundex 5914 extex 5915 symex 5916 ceexlem1 6173 tcfnex 6244 nchoicelem11 6299 nchoicelem16 6304 |
Copyright terms: Public domain | W3C validator |