NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ad4antr GIF version

Theorem ad4antr 712
Description: Deduction adding 4 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypothesis
Ref Expression
ad2ant.1 (φψ)
Assertion
Ref Expression
ad4antr (((((φ χ) θ) τ) η) → ψ)

Proof of Theorem ad4antr
StepHypRef Expression
1 ad2ant.1 . . 3 (φψ)
21ad3antrrr 710 . 2 ((((φ χ) θ) τ) → ψ)
32adantr 451 1 (((((φ χ) θ) τ) η) → ψ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  ad5antr  714
  Copyright terms: Public domain W3C validator