| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > df-an | GIF version | ||
| Description: Define conjunction
(logical 'and').  Definition of [Margaris] p.
49.  When
     both the left and right operand are true, the result is true; when either
     is false, the result is false.  For example, it is true that (2 = 2 ∧
     3 = 3).  After we define the constant true ⊤ (df-tru 1319) and the
     constant false ⊥ (df-fal 1320), we will be able to prove these truth
     table values: (( ⊤  ∧ 
⊤ ) ↔  ⊤ ) (truantru 1336),
     (( ⊤  ∧  ⊥ ) ↔ 
⊥ ) (truanfal 1337), (( ⊥  ∧  ⊤ ) ↔  ⊥ )
     (falantru 1338), and (( ⊥  ∧  ⊥ ) ↔  ⊥ ) (falanfal 1339).
 Contrast with ∨ (df-or 359), → (wi 4), ⊼ (df-nan 1288), and ⊻ (df-xor 1305) . (Contributed by NM, 5-Aug-1993.)  | 
| Ref | Expression | 
|---|---|
| df-an | ⊢ ((φ ∧ ψ) ↔ ¬ (φ → ¬ ψ)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | wph | . . 3 wff φ | |
| 2 | wps | . . 3 wff ψ | |
| 3 | 1, 2 | wa 358 | . 2 wff (φ ∧ ψ) | 
| 4 | 2 | wn 3 | . . . 4 wff ¬ ψ | 
| 5 | 1, 4 | wi 4 | . . 3 wff (φ → ¬ ψ) | 
| 6 | 5 | wn 3 | . 2 wff ¬ (φ → ¬ ψ) | 
| 7 | 3, 6 | wb 176 | 1 wff ((φ ∧ ψ) ↔ ¬ (φ → ¬ ψ)) | 
| Colors of variables: wff setvar class | 
| This definition is referenced by: pm4.63 410 imnan 411 imp 418 ex 423 pm4.54 479 dfbi2 609 pm5.32 617 nfand 1822 nfanOLD 1826 hbanOLD 1829 equsex 1962 sban 2069 r19.35 2759 disj 3592 | 
| Copyright terms: Public domain | W3C validator |