| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > df-an | GIF version | ||
| Description: Define conjunction
(logical 'and'). Definition of [Margaris] p.
49. When
both the left and right operand are true, the result is true; when either
is false, the result is false. For example, it is true that (2 = 2 ∧
3 = 3). After we define the constant true ⊤ (df-tru 1319) and the
constant false ⊥ (df-fal 1320), we will be able to prove these truth
table values: (( ⊤ ∧
⊤ ) ↔ ⊤ ) (truantru 1336),
(( ⊤ ∧ ⊥ ) ↔
⊥ ) (truanfal 1337), (( ⊥ ∧ ⊤ ) ↔ ⊥ )
(falantru 1338), and (( ⊥ ∧ ⊥ ) ↔ ⊥ ) (falanfal 1339).
Contrast with ∨ (df-or 359), → (wi 4), ⊼ (df-nan 1288), and ⊻ (df-xor 1305) . (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| df-an | ⊢ ((φ ∧ ψ) ↔ ¬ (φ → ¬ ψ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff φ | |
| 2 | wps | . . 3 wff ψ | |
| 3 | 1, 2 | wa 358 | . 2 wff (φ ∧ ψ) |
| 4 | 2 | wn 3 | . . . 4 wff ¬ ψ |
| 5 | 1, 4 | wi 4 | . . 3 wff (φ → ¬ ψ) |
| 6 | 5 | wn 3 | . 2 wff ¬ (φ → ¬ ψ) |
| 7 | 3, 6 | wb 176 | 1 wff ((φ ∧ ψ) ↔ ¬ (φ → ¬ ψ)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: pm4.63 410 imnan 411 imp 418 ex 423 pm4.54 479 dfbi2 609 pm5.32 617 nfand 1822 nfanOLD 1826 hbanOLD 1829 equsex 1962 sban 2069 r19.35 2759 disj 3592 |
| Copyright terms: Public domain | W3C validator |