| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > ad8antr | GIF version | ||
| Description: Deduction adding 8 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| ad2ant.1 | ⊢ (φ → ψ) |
| Ref | Expression |
|---|---|
| ad8antr | ⊢ (((((((((φ ∧ χ) ∧ θ) ∧ τ) ∧ η) ∧ ζ) ∧ σ) ∧ ρ) ∧ μ) → ψ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad2ant.1 | . . 3 ⊢ (φ → ψ) | |
| 2 | 1 | ad7antr 718 | . 2 ⊢ ((((((((φ ∧ χ) ∧ θ) ∧ τ) ∧ η) ∧ ζ) ∧ σ) ∧ ρ) → ψ) |
| 3 | 2 | adantr 451 | 1 ⊢ (((((((((φ ∧ χ) ∧ θ) ∧ τ) ∧ η) ∧ ζ) ∧ σ) ∧ ρ) ∧ μ) → ψ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 |
| This theorem is referenced by: ad9antr 722 |
| Copyright terms: Public domain | W3C validator |