NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ad8antr GIF version

Theorem ad8antr 720
Description: Deduction adding 8 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017.)
Ref Expression
ad2ant.1 (φψ)
Ref Expression
ad8antr (((((((((φ χ) θ) τ) η) ζ) σ) ρ) μ) → ψ)

Proof of Theorem ad8antr
StepHypRef Expression
1 ad2ant.1 . . 3 (φψ)
21ad7antr 718 . 2 ((((((((φ χ) θ) τ) η) ζ) σ) ρ) → ψ)
32adantr 451 1 (((((((((φ χ) θ) τ) η) ζ) σ) ρ) μ) → ψ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  ad9antr  722
  Copyright terms: Public domain W3C validator