New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > anabsan2 | GIF version |
Description: Absorption of antecedent with conjunction. (Contributed by NM, 10-May-2004.) |
Ref | Expression |
---|---|
anabsan2.1 | ⊢ ((φ ∧ (ψ ∧ ψ)) → χ) |
Ref | Expression |
---|---|
anabsan2 | ⊢ ((φ ∧ ψ) → χ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anabsan2.1 | . . 3 ⊢ ((φ ∧ (ψ ∧ ψ)) → χ) | |
2 | 1 | an12s 776 | . 2 ⊢ ((ψ ∧ (φ ∧ ψ)) → χ) |
3 | 2 | anabss7 794 | 1 ⊢ ((φ ∧ ψ) → χ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: anabss3 796 anandirs 804 |
Copyright terms: Public domain | W3C validator |