NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  axmeredith GIF version

Theorem axmeredith 1405
Description: Alias for meredith 1404 which "verify markup *" will match to ax-meredith 1406. (Contributed by NM, 21-Aug-2017.) (New usage is discouraged.)
Assertion
Ref Expression
axmeredith (((((φψ) → (¬ χ → ¬ θ)) → χ) → τ) → ((τφ) → (θφ)))

Proof of Theorem axmeredith
StepHypRef Expression
1 meredith 1404 1 (((((φψ) → (¬ χ → ¬ θ)) → χ) → τ) → ((τφ) → (θφ)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator