New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ax-meredith | GIF version |
Description: Theorem meredith 1404 restated as an axiom. This will allow us to ensure that the rederivation of ax1 1431, ax2 1432, and ax3 1433 below depend only on Meredith's sole axiom and not accidentally on a previous theorem above. Outside of this section, we will not make use of this axiom. (Contributed by NM, 14-Dec-2002.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ax-meredith | ⊢ (((((φ → ψ) → (¬ χ → ¬ θ)) → χ) → τ) → ((τ → φ) → (θ → φ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . . . . 6 wff φ | |
2 | wps | . . . . . 6 wff ψ | |
3 | 1, 2 | wi 4 | . . . . 5 wff (φ → ψ) |
4 | wch | . . . . . . 7 wff χ | |
5 | 4 | wn 3 | . . . . . 6 wff ¬ χ |
6 | wth | . . . . . . 7 wff θ | |
7 | 6 | wn 3 | . . . . . 6 wff ¬ θ |
8 | 5, 7 | wi 4 | . . . . 5 wff (¬ χ → ¬ θ) |
9 | 3, 8 | wi 4 | . . . 4 wff ((φ → ψ) → (¬ χ → ¬ θ)) |
10 | 9, 4 | wi 4 | . . 3 wff (((φ → ψ) → (¬ χ → ¬ θ)) → χ) |
11 | wta | . . 3 wff τ | |
12 | 10, 11 | wi 4 | . 2 wff ((((φ → ψ) → (¬ χ → ¬ θ)) → χ) → τ) |
13 | 11, 1 | wi 4 | . . 3 wff (τ → φ) |
14 | 6, 1 | wi 4 | . . 3 wff (θ → φ) |
15 | 13, 14 | wi 4 | . 2 wff ((τ → φ) → (θ → φ)) |
16 | 12, 15 | wi 4 | 1 wff (((((φ → ψ) → (¬ χ → ¬ θ)) → χ) → τ) → ((τ → φ) → (θ → φ))) |
Colors of variables: wff setvar class |
This axiom is referenced by: merlem1 1407 merlem2 1408 merlem3 1409 merlem4 1410 merlem5 1411 merlem7 1413 merlem8 1414 merlem9 1415 merlem10 1416 merlem11 1417 merlem13 1419 luk-1 1420 luk-2 1421 |
Copyright terms: Public domain | W3C validator |