New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > df-3c | GIF version |
Description: Define cardinal three. This is the set of all sets with three unique elements. (Contributed by Scott Fenton, 24-Feb-2015.) |
Ref | Expression |
---|---|
df-3c | ⊢ 3c = Nc {∅, V, (V ∖ {∅})} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c3c 6096 | . 2 class 3c | |
2 | c0 3551 | . . . 4 class ∅ | |
3 | cvv 2860 | . . . 4 class V | |
4 | 2 | csn 3738 | . . . . 5 class {∅} |
5 | 3, 4 | cdif 3207 | . . . 4 class (V ∖ {∅}) |
6 | 2, 3, 5 | ctp 3740 | . . 3 class {∅, V, (V ∖ {∅})} |
7 | 6 | cnc 6092 | . 2 class Nc {∅, V, (V ∖ {∅})} |
8 | 1, 7 | wceq 1642 | 1 wff 3c = Nc {∅, V, (V ∖ {∅})} |
Colors of variables: wff setvar class |
This definition is referenced by: 2p1e3c 6157 |
Copyright terms: Public domain | W3C validator |