| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > df-3c | GIF version | ||
| Description: Define cardinal three. This is the set of all sets with three unique elements. (Contributed by Scott Fenton, 24-Feb-2015.) | 
| Ref | Expression | 
|---|---|
| df-3c | ⊢ 3c = Nc {∅, V, (V ∖ {∅})} | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | c3c 6096 | . 2 class 3c | |
| 2 | c0 3551 | . . . 4 class ∅ | |
| 3 | cvv 2860 | . . . 4 class V | |
| 4 | 2 | csn 3738 | . . . . 5 class {∅} | 
| 5 | 3, 4 | cdif 3207 | . . . 4 class (V ∖ {∅}) | 
| 6 | 2, 3, 5 | ctp 3740 | . . 3 class {∅, V, (V ∖ {∅})} | 
| 7 | 6 | cnc 6092 | . 2 class Nc {∅, V, (V ∖ {∅})} | 
| 8 | 1, 7 | wceq 1642 | 1 wff 3c = Nc {∅, V, (V ∖ {∅})} | 
| Colors of variables: wff setvar class | 
| This definition is referenced by: 2p1e3c 6157 | 
| Copyright terms: Public domain | W3C validator |