New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 2p1e3c | GIF version |
Description: Two plus one equals three. (Contributed by SF, 2-Mar-2015.) |
Ref | Expression |
---|---|
2p1e3c | ⊢ (2c +c 1c) = 3c |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vvex 4110 | . . . . . . . 8 ⊢ V ∈ V | |
2 | vn0 3558 | . . . . . . . 8 ⊢ V ≠ ∅ | |
3 | eldifsn 3840 | . . . . . . . 8 ⊢ (V ∈ (V ∖ {∅}) ↔ (V ∈ V ∧ V ≠ ∅)) | |
4 | 1, 2, 3 | mpbir2an 886 | . . . . . . 7 ⊢ V ∈ (V ∖ {∅}) |
5 | n0i 3556 | . . . . . . 7 ⊢ (V ∈ (V ∖ {∅}) → ¬ (V ∖ {∅}) = ∅) | |
6 | 4, 5 | ax-mp 5 | . . . . . 6 ⊢ ¬ (V ∖ {∅}) = ∅ |
7 | 0ex 4111 | . . . . . . . . . . 11 ⊢ ∅ ∈ V | |
8 | 7 | snid 3761 | . . . . . . . . . 10 ⊢ ∅ ∈ {∅} |
9 | 8 | notnoti 115 | . . . . . . . . 9 ⊢ ¬ ¬ ∅ ∈ {∅} |
10 | 9 | intnan 880 | . . . . . . . 8 ⊢ ¬ (∅ ∈ V ∧ ¬ ∅ ∈ {∅}) |
11 | eldif 3222 | . . . . . . . 8 ⊢ (∅ ∈ (V ∖ {∅}) ↔ (∅ ∈ V ∧ ¬ ∅ ∈ {∅})) | |
12 | 10, 11 | mtbir 290 | . . . . . . 7 ⊢ ¬ ∅ ∈ (V ∖ {∅}) |
13 | eleq2 2414 | . . . . . . . 8 ⊢ ((V ∖ {∅}) = V → (∅ ∈ (V ∖ {∅}) ↔ ∅ ∈ V)) | |
14 | 7, 13 | mpbiri 224 | . . . . . . 7 ⊢ ((V ∖ {∅}) = V → ∅ ∈ (V ∖ {∅})) |
15 | 12, 14 | mto 167 | . . . . . 6 ⊢ ¬ (V ∖ {∅}) = V |
16 | 6, 15 | pm3.2ni 827 | . . . . 5 ⊢ ¬ ((V ∖ {∅}) = ∅ ∨ (V ∖ {∅}) = V) |
17 | snex 4112 | . . . . . . 7 ⊢ {∅} ∈ V | |
18 | 1, 17 | difex 4108 | . . . . . 6 ⊢ (V ∖ {∅}) ∈ V |
19 | 18 | elpr 3752 | . . . . 5 ⊢ ((V ∖ {∅}) ∈ {∅, V} ↔ ((V ∖ {∅}) = ∅ ∨ (V ∖ {∅}) = V)) |
20 | 16, 19 | mtbir 290 | . . . 4 ⊢ ¬ (V ∖ {∅}) ∈ {∅, V} |
21 | disjsn 3787 | . . . 4 ⊢ (({∅, V} ∩ {(V ∖ {∅})}) = ∅ ↔ ¬ (V ∖ {∅}) ∈ {∅, V}) | |
22 | 20, 21 | mpbir 200 | . . 3 ⊢ ({∅, V} ∩ {(V ∖ {∅})}) = ∅ |
23 | prex 4113 | . . . 4 ⊢ {∅, V} ∈ V | |
24 | snex 4112 | . . . 4 ⊢ {(V ∖ {∅})} ∈ V | |
25 | 23, 24 | ncdisjun 6137 | . . 3 ⊢ (({∅, V} ∩ {(V ∖ {∅})}) = ∅ → Nc ({∅, V} ∪ {(V ∖ {∅})}) = ( Nc {∅, V} +c Nc {(V ∖ {∅})})) |
26 | 22, 25 | ax-mp 5 | . 2 ⊢ Nc ({∅, V} ∪ {(V ∖ {∅})}) = ( Nc {∅, V} +c Nc {(V ∖ {∅})}) |
27 | df-3c 6106 | . . 3 ⊢ 3c = Nc {∅, V, (V ∖ {∅})} | |
28 | df-tp 3744 | . . . 4 ⊢ {∅, V, (V ∖ {∅})} = ({∅, V} ∪ {(V ∖ {∅})}) | |
29 | 28 | nceqi 6110 | . . 3 ⊢ Nc {∅, V, (V ∖ {∅})} = Nc ({∅, V} ∪ {(V ∖ {∅})}) |
30 | 27, 29 | eqtri 2373 | . 2 ⊢ 3c = Nc ({∅, V} ∪ {(V ∖ {∅})}) |
31 | df-2c 6105 | . . 3 ⊢ 2c = Nc {∅, V} | |
32 | 18 | df1c3 6141 | . . 3 ⊢ 1c = Nc {(V ∖ {∅})} |
33 | 31, 32 | addceq12i 4389 | . 2 ⊢ (2c +c 1c) = ( Nc {∅, V} +c Nc {(V ∖ {∅})}) |
34 | 26, 30, 33 | 3eqtr4ri 2384 | 1 ⊢ (2c +c 1c) = 3c |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∨ wo 357 ∧ wa 358 = wceq 1642 ∈ wcel 1710 ≠ wne 2517 Vcvv 2860 ∖ cdif 3207 ∪ cun 3208 ∩ cin 3209 ∅c0 3551 {csn 3738 {cpr 3739 {ctp 3740 1cc1c 4135 +c cplc 4376 Nc cnc 6092 2cc2c 6095 3cc3c 6096 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-tp 3744 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-1st 4724 df-swap 4725 df-sset 4726 df-co 4727 df-ima 4728 df-si 4729 df-id 4768 df-xp 4785 df-cnv 4786 df-rn 4787 df-dm 4788 df-res 4789 df-fun 4790 df-fn 4791 df-f 4792 df-f1 4793 df-fo 4794 df-f1o 4795 df-fv 4796 df-2nd 4798 df-txp 5737 df-ins2 5751 df-ins3 5753 df-image 5755 df-ins4 5757 df-si3 5759 df-funs 5761 df-fns 5763 df-trans 5900 df-sym 5909 df-er 5910 df-ec 5948 df-qs 5952 df-en 6030 df-ncs 6099 df-nc 6102 df-2c 6105 df-3c 6106 |
This theorem is referenced by: nchoicelem9 6298 nchoicelem17 6306 |
Copyright terms: Public domain | W3C validator |