New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 2p1e3c | GIF version |
Description: Two plus one equals three. (Contributed by SF, 2-Mar-2015.) |
Ref | Expression |
---|---|
2p1e3c | ⊢ (2c +c 1c) = 3c |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vvex 4109 | . . . . . . . 8 ⊢ V ∈ V | |
2 | vn0 3557 | . . . . . . . 8 ⊢ V ≠ ∅ | |
3 | eldifsn 3839 | . . . . . . . 8 ⊢ (V ∈ (V ∖ {∅}) ↔ (V ∈ V ∧ V ≠ ∅)) | |
4 | 1, 2, 3 | mpbir2an 886 | . . . . . . 7 ⊢ V ∈ (V ∖ {∅}) |
5 | n0i 3555 | . . . . . . 7 ⊢ (V ∈ (V ∖ {∅}) → ¬ (V ∖ {∅}) = ∅) | |
6 | 4, 5 | ax-mp 5 | . . . . . 6 ⊢ ¬ (V ∖ {∅}) = ∅ |
7 | 0ex 4110 | . . . . . . . . . . 11 ⊢ ∅ ∈ V | |
8 | 7 | snid 3760 | . . . . . . . . . 10 ⊢ ∅ ∈ {∅} |
9 | 8 | notnoti 115 | . . . . . . . . 9 ⊢ ¬ ¬ ∅ ∈ {∅} |
10 | 9 | intnan 880 | . . . . . . . 8 ⊢ ¬ (∅ ∈ V ∧ ¬ ∅ ∈ {∅}) |
11 | eldif 3221 | . . . . . . . 8 ⊢ (∅ ∈ (V ∖ {∅}) ↔ (∅ ∈ V ∧ ¬ ∅ ∈ {∅})) | |
12 | 10, 11 | mtbir 290 | . . . . . . 7 ⊢ ¬ ∅ ∈ (V ∖ {∅}) |
13 | eleq2 2414 | . . . . . . . 8 ⊢ ((V ∖ {∅}) = V → (∅ ∈ (V ∖ {∅}) ↔ ∅ ∈ V)) | |
14 | 7, 13 | mpbiri 224 | . . . . . . 7 ⊢ ((V ∖ {∅}) = V → ∅ ∈ (V ∖ {∅})) |
15 | 12, 14 | mto 167 | . . . . . 6 ⊢ ¬ (V ∖ {∅}) = V |
16 | 6, 15 | pm3.2ni 827 | . . . . 5 ⊢ ¬ ((V ∖ {∅}) = ∅ ∨ (V ∖ {∅}) = V) |
17 | snex 4111 | . . . . . . 7 ⊢ {∅} ∈ V | |
18 | 1, 17 | difex 4107 | . . . . . 6 ⊢ (V ∖ {∅}) ∈ V |
19 | 18 | elpr 3751 | . . . . 5 ⊢ ((V ∖ {∅}) ∈ {∅, V} ↔ ((V ∖ {∅}) = ∅ ∨ (V ∖ {∅}) = V)) |
20 | 16, 19 | mtbir 290 | . . . 4 ⊢ ¬ (V ∖ {∅}) ∈ {∅, V} |
21 | disjsn 3786 | . . . 4 ⊢ (({∅, V} ∩ {(V ∖ {∅})}) = ∅ ↔ ¬ (V ∖ {∅}) ∈ {∅, V}) | |
22 | 20, 21 | mpbir 200 | . . 3 ⊢ ({∅, V} ∩ {(V ∖ {∅})}) = ∅ |
23 | prex 4112 | . . . 4 ⊢ {∅, V} ∈ V | |
24 | snex 4111 | . . . 4 ⊢ {(V ∖ {∅})} ∈ V | |
25 | 23, 24 | ncdisjun 6136 | . . 3 ⊢ (({∅, V} ∩ {(V ∖ {∅})}) = ∅ → Nc ({∅, V} ∪ {(V ∖ {∅})}) = ( Nc {∅, V} +c Nc {(V ∖ {∅})})) |
26 | 22, 25 | ax-mp 5 | . 2 ⊢ Nc ({∅, V} ∪ {(V ∖ {∅})}) = ( Nc {∅, V} +c Nc {(V ∖ {∅})}) |
27 | df-3c 6105 | . . 3 ⊢ 3c = Nc {∅, V, (V ∖ {∅})} | |
28 | df-tp 3743 | . . . 4 ⊢ {∅, V, (V ∖ {∅})} = ({∅, V} ∪ {(V ∖ {∅})}) | |
29 | 28 | nceqi 6109 | . . 3 ⊢ Nc {∅, V, (V ∖ {∅})} = Nc ({∅, V} ∪ {(V ∖ {∅})}) |
30 | 27, 29 | eqtri 2373 | . 2 ⊢ 3c = Nc ({∅, V} ∪ {(V ∖ {∅})}) |
31 | df-2c 6104 | . . 3 ⊢ 2c = Nc {∅, V} | |
32 | 18 | df1c3 6140 | . . 3 ⊢ 1c = Nc {(V ∖ {∅})} |
33 | 31, 32 | addceq12i 4388 | . 2 ⊢ (2c +c 1c) = ( Nc {∅, V} +c Nc {(V ∖ {∅})}) |
34 | 26, 30, 33 | 3eqtr4ri 2384 | 1 ⊢ (2c +c 1c) = 3c |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∨ wo 357 ∧ wa 358 = wceq 1642 ∈ wcel 1710 ≠ wne 2516 Vcvv 2859 ∖ cdif 3206 ∪ cun 3207 ∩ cin 3208 ∅c0 3550 {csn 3737 {cpr 3738 {ctp 3739 1cc1c 4134 +c cplc 4375 Nc cnc 6091 2cc2c 6094 3cc3c 6095 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-reu 2621 df-rmo 2622 df-rab 2623 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-pss 3261 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-tp 3743 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-iota 4339 df-0c 4377 df-addc 4378 df-nnc 4379 df-fin 4380 df-lefin 4440 df-ltfin 4441 df-ncfin 4442 df-tfin 4443 df-evenfin 4444 df-oddfin 4445 df-sfin 4446 df-spfin 4447 df-phi 4565 df-op 4566 df-proj1 4567 df-proj2 4568 df-opab 4623 df-br 4640 df-1st 4723 df-swap 4724 df-sset 4725 df-co 4726 df-ima 4727 df-si 4728 df-id 4767 df-xp 4784 df-cnv 4785 df-rn 4786 df-dm 4787 df-res 4788 df-fun 4789 df-fn 4790 df-f 4791 df-f1 4792 df-fo 4793 df-f1o 4794 df-fv 4795 df-2nd 4797 df-txp 5736 df-ins2 5750 df-ins3 5752 df-image 5754 df-ins4 5756 df-si3 5758 df-funs 5760 df-fns 5762 df-trans 5899 df-sym 5908 df-er 5909 df-ec 5947 df-qs 5951 df-en 6029 df-ncs 6098 df-nc 6101 df-2c 6104 df-3c 6105 |
This theorem is referenced by: nchoicelem9 6297 nchoicelem17 6305 |
Copyright terms: Public domain | W3C validator |