Detailed syntax breakdown of Definition df-ce
| Step | Hyp | Ref
| Expression |
| 1 | | cce 6097 |
. 2
class
↑c |
| 2 | | vn |
. . 3
setvar n |
| 3 | | vm |
. . 3
setvar m |
| 4 | | cncs 6089 |
. . 3
class NC |
| 5 | | va |
. . . . . . . . . 10
setvar a |
| 6 | 5 | cv 1641 |
. . . . . . . . 9
class a |
| 7 | 6 | cpw1 4136 |
. . . . . . . 8
class ℘1a |
| 8 | 2 | cv 1641 |
. . . . . . . 8
class n |
| 9 | 7, 8 | wcel 1710 |
. . . . . . 7
wff ℘1a ∈ n |
| 10 | | vb |
. . . . . . . . . 10
setvar b |
| 11 | 10 | cv 1641 |
. . . . . . . . 9
class b |
| 12 | 11 | cpw1 4136 |
. . . . . . . 8
class ℘1b |
| 13 | 3 | cv 1641 |
. . . . . . . 8
class m |
| 14 | 12, 13 | wcel 1710 |
. . . . . . 7
wff ℘1b ∈ m |
| 15 | | vg |
. . . . . . . . 9
setvar g |
| 16 | 15 | cv 1641 |
. . . . . . . 8
class g |
| 17 | | cmap 6000 |
. . . . . . . . 9
class
↑m |
| 18 | 6, 11, 17 | co 5526 |
. . . . . . . 8
class (a ↑m b) |
| 19 | | cen 6029 |
. . . . . . . 8
class ≈ |
| 20 | 16, 18, 19 | wbr 4640 |
. . . . . . 7
wff g
≈ (a ↑m
b) |
| 21 | 9, 14, 20 | w3a 934 |
. . . . . 6
wff (℘1a ∈ n ∧ ℘1b ∈ m ∧ g ≈ (a
↑m b)) |
| 22 | 21, 10 | wex 1541 |
. . . . 5
wff ∃b(℘1a ∈ n ∧ ℘1b ∈ m ∧ g ≈ (a
↑m b)) |
| 23 | 22, 5 | wex 1541 |
. . . 4
wff ∃a∃b(℘1a ∈ n ∧ ℘1b ∈ m ∧ g ≈ (a
↑m b)) |
| 24 | 23, 15 | cab 2339 |
. . 3
class {g ∣ ∃a∃b(℘1a ∈ n ∧ ℘1b ∈ m ∧ g ≈ (a
↑m b))} |
| 25 | 2, 3, 4, 4, 24 | cmpt2 5654 |
. 2
class (n ∈ NC , m ∈ NC ↦ {g ∣ ∃a∃b(℘1a ∈ n ∧ ℘1b ∈ m ∧ g ≈ (a
↑m b))}) |
| 26 | 1, 25 | wceq 1642 |
1
wff ↑c = (n ∈ NC , m ∈ NC ↦ {g ∣ ∃a∃b(℘1a ∈ n ∧ ℘1b ∈ m ∧ g ≈ (a
↑m b))}) |