New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > df-disj | GIF version |
Description: Define the relationship of all disjoint sets. (Contributed by SF, 9-Feb-2015.) |
Ref | Expression |
---|---|
df-disj | ⊢ Disj = {〈x, y〉 ∣ (x ∩ y) = ∅} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdisj 5743 | . 2 class Disj | |
2 | vx | . . . . . 6 setvar x | |
3 | 2 | cv 1641 | . . . . 5 class x |
4 | vy | . . . . . 6 setvar y | |
5 | 4 | cv 1641 | . . . . 5 class y |
6 | 3, 5 | cin 3208 | . . . 4 class (x ∩ y) |
7 | c0 3550 | . . . 4 class ∅ | |
8 | 6, 7 | wceq 1642 | . . 3 wff (x ∩ y) = ∅ |
9 | 8, 2, 4 | copab 4622 | . 2 class {〈x, y〉 ∣ (x ∩ y) = ∅} |
10 | 1, 9 | wceq 1642 | 1 wff Disj = {〈x, y〉 ∣ (x ∩ y) = ∅} |
Colors of variables: wff setvar class |
This definition is referenced by: brdisjg 5821 disjex 5823 |
Copyright terms: Public domain | W3C validator |