New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > df-id | GIF version |
Description: Define the identity relation. Definition 9.15 of [Quine] p. 64. (Contributed by SF, 5-Jan-2015.) |
Ref | Expression |
---|---|
df-id | ⊢ I = {〈x, y〉 ∣ x = y} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cid 4764 | . 2 class I | |
2 | vx | . . . 4 setvar x | |
3 | vy | . . . 4 setvar y | |
4 | 2, 3 | weq 1643 | . . 3 wff x = y |
5 | 4, 2, 3 | copab 4623 | . 2 class {〈x, y〉 ∣ x = y} |
6 | 1, 5 | wceq 1642 | 1 wff I = {〈x, y〉 ∣ x = y} |
Colors of variables: wff setvar class |
This definition is referenced by: dfid3 4769 ideqg 4869 ideqg2 4870 cnvi 5033 |
Copyright terms: Public domain | W3C validator |