Theorem List for New Foundations Explorer - 4701-4800 *Has distinct variable
group(s)
Type | Label | Description |
Statement |
|
Theorem | brabga 4701* |
The law of concretion for a binary relation. (Contributed by Mario
Carneiro, 19-Dec-2013.)
|
⊢ ((x =
A ∧
y = B)
→ (φ ↔ ψ))
& ⊢ R = {〈x, y〉 ∣ φ} ⇒ ⊢ ((A ∈ V ∧ B ∈ W) →
(ARB ↔ ψ)) |
|
Theorem | opelopab2a 4702* |
Ordered pair membership in an ordered pair class abstraction.
(Contributed by Mario Carneiro, 19-Dec-2013.)
|
⊢ ((x =
A ∧
y = B)
→ (φ ↔ ψ)) ⇒ ⊢ ((A ∈ C ∧ B ∈ D) →
(〈A,
B〉 ∈ {〈x, y〉 ∣ ((x ∈ C ∧ y ∈ D) ∧ φ)} ↔ ψ)) |
|
Theorem | opelopaba 4703* |
The law of concretion. Theorem 9.5 of [Quine] p.
61. (Contributed by
Mario Carneiro, 19-Dec-2013.)
|
⊢ A ∈ V
& ⊢ B ∈ V
& ⊢ ((x =
A ∧
y = B)
→ (φ ↔ ψ)) ⇒ ⊢ (〈A, B〉 ∈ {〈x, y〉 ∣ φ}
↔ ψ) |
|
Theorem | braba 4704* |
The law of concretion for a binary relation. (Contributed by NM,
19-Dec-2013.)
|
⊢ A ∈ V
& ⊢ B ∈ V
& ⊢ ((x =
A ∧
y = B)
→ (φ ↔ ψ))
& ⊢ R = {〈x, y〉 ∣ φ} ⇒ ⊢ (ARB ↔ ψ) |
|
Theorem | opelopabg 4705* |
The law of concretion. Theorem 9.5 of [Quine] p.
61. (Contributed by
NM, 28-May-1995.) (Revised by set.mm contributors, 19-Dec-2013.)
|
⊢ (x =
A → (φ ↔ ψ))
& ⊢ (y =
B → (ψ ↔ χ)) ⇒ ⊢ ((A ∈ V ∧ B ∈ W) →
(〈A,
B〉 ∈ {〈x, y〉 ∣ φ} ↔ χ)) |
|
Theorem | brabg 4706* |
The law of concretion for a binary relation. (Contributed by NM,
16-Aug-1999.) (Revised by set.mm contributors, 19-Dec-2013.)
|
⊢ (x =
A → (φ ↔ ψ))
& ⊢ (y =
B → (ψ ↔ χ))
& ⊢ R = {〈x, y〉 ∣ φ} ⇒ ⊢ ((A ∈ C ∧ B ∈ D) →
(ARB ↔ χ)) |
|
Theorem | opelopab2 4707* |
Ordered pair membership in an ordered pair class abstraction.
(Contributed by NM, 14-Oct-2007.) (Revised by set.mm contributors,
19-Dec-2013.)
|
⊢ (x =
A → (φ ↔ ψ))
& ⊢ (y =
B → (ψ ↔ χ)) ⇒ ⊢ ((A ∈ C ∧ B ∈ D) →
(〈A,
B〉 ∈ {〈x, y〉 ∣ ((x ∈ C ∧ y ∈ D) ∧ φ)} ↔ χ)) |
|
Theorem | opelopab 4708* |
The law of concretion. Theorem 9.5 of [Quine] p.
61. (Contributed by
NM, 16-May-1995.)
|
⊢ A ∈ V
& ⊢ B ∈ V
& ⊢ (x =
A → (φ ↔ ψ))
& ⊢ (y =
B → (ψ ↔ χ)) ⇒ ⊢ (〈A, B〉 ∈ {〈x, y〉 ∣ φ}
↔ χ) |
|
Theorem | brab 4709* |
The law of concretion for a binary relation. (Contributed by NM,
16-Aug-1999.)
|
⊢ A ∈ V
& ⊢ B ∈ V
& ⊢ (x =
A → (φ ↔ ψ))
& ⊢ (y =
B → (ψ ↔ χ))
& ⊢ R = {〈x, y〉 ∣ φ} ⇒ ⊢ (ARB ↔ χ) |
|
Theorem | opelopabaf 4710* |
The law of concretion. Theorem 9.5 of [Quine] p.
61. This version of
opelopab 4708 uses bound-variable hypotheses in place of
distinct variable
conditions." (Contributed by Mario Carneiro, 19-Dec-2013.) (Proof
shortened by Mario Carneiro, 18-Nov-2016.)
|
⊢ Ⅎxψ
& ⊢ Ⅎyψ
& ⊢ A ∈ V
& ⊢ B ∈ V
& ⊢ ((x =
A ∧
y = B)
→ (φ ↔ ψ)) ⇒ ⊢ (〈A, B〉 ∈ {〈x, y〉 ∣ φ}
↔ ψ) |
|
Theorem | opelopabf 4711* |
The law of concretion. Theorem 9.5 of [Quine] p.
61. This version of
opelopab 4708 uses bound-variable hypotheses in place of
distinct variable
conditions." (Contributed by NM, 19-Dec-2008.)
|
⊢ Ⅎxψ
& ⊢ Ⅎyχ
& ⊢ A ∈ V
& ⊢ B ∈ V
& ⊢ (x =
A → (φ ↔ ψ))
& ⊢ (y =
B → (ψ ↔ χ)) ⇒ ⊢ (〈A, B〉 ∈ {〈x, y〉 ∣ φ}
↔ χ) |
|
Theorem | ssopab2 4712 |
Equivalence of ordered pair abstraction subclass and implication.
(Contributed by NM, 27-Dec-1996.) (Revised by Mario Carneiro,
19-May-2013.)
|
⊢ (∀x∀y(φ →
ψ) → {〈x, y〉 ∣ φ}
⊆ {〈x, y〉 ∣ ψ}) |
|
Theorem | ssopab2b 4713 |
Equivalence of ordered pair abstraction subclass and implication.
(Contributed by NM, 27-Dec-1996.) (Proof shortened by Mario Carneiro,
18-Nov-2016.)
|
⊢ ({〈x, y〉 ∣ φ} ⊆
{〈x,
y〉 ∣ ψ}
↔ ∀x∀y(φ →
ψ)) |
|
Theorem | ssopab2i 4714 |
Inference of ordered pair abstraction subclass from implication.
(Contributed by NM, 5-Apr-1995.)
|
⊢ (φ
→ ψ)
⇒ ⊢ {〈x, y〉 ∣ φ}
⊆ {〈x, y〉 ∣ ψ} |
|
Theorem | ssopab2dv 4715* |
Inference of ordered pair abstraction subclass from implication.
(Contributed by NM, 19-Jan-2014.) (Revised by Mario Carneiro,
24-Jun-2014.)
|
⊢ (φ
→ (ψ → χ)) ⇒ ⊢ (φ
→ {〈x, y〉 ∣ ψ} ⊆
{〈x,
y〉 ∣ χ}) |
|
Theorem | opabn0 4716 |
Nonempty ordered pair class abstraction. (Contributed by NM,
10-Oct-2007.)
|
⊢ ({〈x, y〉 ∣ φ} ≠ ∅
↔ ∃x∃yφ) |
|
2.3.5 Set construction functions
|
|
Syntax | c1st 4717 |
Extend the definition of a class to include the first member an ordered
pair function.
|
class
1st |
|
Syntax | cswap 4718 |
Extend the definition of a class to include the swap function.
|
class
Swap |
|
Syntax | csset 4719 |
Extend the definition of a class to include the subset relationship.
|
class
S |
|
Syntax | csi 4720 |
Extend the definition of a class to include the singleton image.
|
class
SI A |
|
Syntax | ccom 4721 |
Extend the definition of a class to include the composition of two
classes.
|
class
(A ∘ B) |
|
Syntax | cima 4722 |
Extend the definition of a class to include the image of one class under
another.
|
class
(A “ B) |
|
Definition | df-1st 4723* |
Define a function that extracts the first member, or abscissa, of an
ordered pair. (Contributed by SF, 5-Jan-2015.)
|
⊢ 1st = {〈x, y〉 ∣ ∃z x = 〈y, z〉} |
|
Definition | df-swap 4724* |
Define a function that swaps the two elements of an ordered pair.
(Contributed by SF, 5-Jan-2015.)
|
⊢ Swap = {〈x, y〉 ∣ ∃z∃w(x = 〈z, w〉 ∧ y = 〈w, z〉)} |
|
Definition | df-sset 4725* |
Define a relationship that holds between subsets. (Contributed by SF,
5-Jan-2015.)
|
⊢ S = {〈x, y〉 ∣ x ⊆ y} |
|
Definition | df-co 4726* |
Define the composition of two classes. (Contributed by SF,
5-Jan-2015.)
|
⊢ (A ∘ B) = {〈x, y〉 ∣ ∃z(xBz ∧ zAy)} |
|
Definition | df-ima 4727* |
Define the image of one class under another. (Contributed by SF,
5-Jan-2015.)
|
⊢ (A “
B) = {x ∣ ∃y ∈ B yAx} |
|
Definition | df-si 4728* |
Define the singleton image of a class. (Contributed by SF,
5-Jan-2015.)
|
⊢ SI A = {〈x, y〉 ∣ ∃z∃w(x = {z} ∧ y = {w} ∧ zAw)} |
|
Theorem | el1st 4729* |
Membership in 1st. (Contributed by SF, 5-Jan-2015.)
|
⊢ (A ∈ 1st ↔ ∃x∃y A = 〈〈x, y〉, x〉) |
|
Theorem | br1stg 4730 |
The binary relationship over the 1st function.
(Contributed by SF,
5-Jan-2015.)
|
⊢ ((A ∈ V ∧ B ∈ W) →
(〈A,
B〉1st C ↔ A =
C)) |
|
Theorem | setconslem1 4731* |
Lemma for the set construction theorems. (Contributed by SF,
6-Jan-2015.)
|
⊢ A ∈ V
& ⊢ B ∈ V ⇒ ⊢ (⟪{A}, B⟫
∈ ( Sk ∘k SIk ◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V)))) ↔ ∃x ∈ B
A = Phi x) |
|
Theorem | setconslem2 4732* |
Lemma for the set construction theorems. (Contributed by SF,
6-Jan-2015.)
|
⊢ A ∈ V
& ⊢ B ∈ V ⇒ ⊢ (⟪{A}, B⟫
∈ (( Ins2k Sk ∩ Ins3k SIk ∼ (( Ins2k Sk ⊕ Ins3k ((◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V))) ∘k Sk ) ∪ ({{0c}} ×k
V))) “k ℘1℘11c)) “k ℘1℘11c) ↔ ∃x ∈
B A = ( Phi
x ∪ {0c})) |
|
Theorem | setconslem3 4733 |
Lemma for set construction functions. Set up a mapping between
Kuratowski and Quine ordered pairs. (Contributed by SF, 7-Jan-2015.)
|
⊢ A ∈ V
& ⊢ B ∈ V
& ⊢ C ∈ V ⇒ ⊢ (⟪{{A}}, ⟪B,
C⟫⟫ ∈ ∼ (( Ins3k SIk SIk Sk ⊕ Ins2k ( Ins3k ( Sk ∘k SIk ◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V)))) ∪ Ins2k (( Ins2k Sk ∩
Ins3k SIk
∼ (( Ins2k Sk ⊕ Ins3k
((◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V))) ∘k Sk ) ∪ ({{0c}} ×k
V))) “k ℘1℘11c)) “k ℘1℘11c))) “k ℘1℘1℘1℘11c) ↔ A = 〈B,
C〉) |
|
Theorem | setconslem4 4734* |
Lemma for set construction functions. Create a mapping between the two
types of ordered pair abstractions. (Contributed by SF, 7-Jan-2015.)
|
⊢ ⋃1⋃1((((V
×k V) ×k V) ∩ ◡k ∼ (( Ins3k SIk SIk Sk ⊕ Ins2k ( Ins3k ( Sk ∘k SIk ◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V)))) ∪ Ins2k (( Ins2k Sk ∩
Ins3k SIk
∼ (( Ins2k Sk ⊕ Ins3k
((◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V))) ∘k Sk ) ∪ ({{0c}} ×k
V))) “k ℘1℘11c)) “k ℘1℘11c))) “k ℘1℘1℘1℘11c)) “k A) = {〈x,
y〉 ∣ ⟪x, y⟫ ∈ A} |
|
Theorem | setconslem5 4735 |
Lemma for set construction theorems. The big expression in the middle of
setconslem4 4734 forms a set. (Contributed by SF,
7-Jan-2015.)
|
⊢ ∼ (( Ins3k SIk SIk Sk ⊕ Ins2k ( Ins3k ( Sk ∘k SIk ◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V)))) ∪ Ins2k (( Ins2k Sk ∩
Ins3k SIk
∼ (( Ins2k Sk ⊕ Ins3k
((◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V))) ∘k Sk ) ∪ ({{0c}} ×k
V))) “k ℘1℘11c)) “k ℘1℘11c))) “k ℘1℘1℘1℘11c) ∈
V |
|
Theorem | setconslem6 4736* |
Lemma for the set construction functions. Invert the expression from
setconslem4 4734. (Contributed by SF, 7-Jan-2015.)
|
⊢ (((V ×k (V
×k V)) ∩ ∼ (( Ins3k SIk SIk Sk ⊕ Ins2k ( Ins3k ( Sk ∘k SIk ◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V)))) ∪ Ins2k (( Ins2k Sk ∩
Ins3k SIk
∼ (( Ins2k Sk ⊕ Ins3k
((◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V))) ∘k Sk ) ∪ ({{0c}} ×k
V))) “k ℘1℘11c)) “k ℘1℘11c))) “k ℘1℘1℘1℘11c)) “k ℘1℘1A) = {z ∣ ∃x∃y(z = ⟪x, y⟫ ∧ 〈x,
y〉 ∈ A)} |
|
Theorem | setconslem7 4737 |
Lemma for the set construction theorems. Reorganized version of
setconslem3 4733. (Contributed by SF, 4-Feb-2015.)
|
⊢ A ∈ V
& ⊢ B ∈ V
& ⊢ C ∈ V ⇒ ⊢ (⟪{{C}}, ⟪A,
B⟫⟫ ∈ ∼ (( Ins2k Ins3k Sk ⊕ ( Ins2k Ins2k ( Sk ∘k SIk ◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V)))) ∪ Ins3k SIk SIk (( Ins2k Sk ∩
Ins3k SIk
∼ (( Ins2k Sk ⊕ Ins3k
((◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V))) ∘k Sk ) ∪ ({{0c}} ×k
V))) “k ℘1℘11c)) “k ℘1℘11c))) “k ℘1℘1℘1℘11c) ↔ A = 〈B,
C〉) |
|
Theorem | df1st2 4738 |
Express the 1st function via the set construction
functions.
(Contributed by SF, 4-Feb-2015.)
|
⊢ 1st =
⋃1⋃1((((V ×k V)
×k V) ∩ ◡k ∼ (( Ins3k SIk SIk Sk ⊕ Ins2k ( Ins3k ( Sk ∘k SIk ◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V)))) ∪ Ins2k (( Ins2k Sk ∩
Ins3k SIk
∼ (( Ins2k Sk ⊕ Ins3k
((◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V))) ∘k Sk ) ∪ ({{0c}} ×k
V))) “k ℘1℘11c)) “k ℘1℘11c))) “k ℘1℘1℘1℘11c)) “k ( ∼ ((
Ins2k Ins3k
Sk ⊕ ( Ins2k Ins2k (
Sk ∘k
SIk ◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V)))) ∪ Ins3k SIk SIk (( Ins2k Sk ∩
Ins3k SIk
∼ (( Ins2k Sk ⊕ Ins3k
((◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V))) ∘k Sk ) ∪ ({{0c}} ×k
V))) “k ℘1℘11c)) “k ℘1℘11c))) “k ℘1℘1℘1℘11c) “k ℘11c)) |
|
Theorem | 1stex 4739 |
The 1st function is a set. (Contributed by SF,
6-Jan-2015.)
|
⊢ 1st ∈ V |
|
Theorem | elswap 4740* |
Membership in the Swap function.
(Contributed by SF,
6-Jan-2015.)
|
⊢ (A ∈ Swap ↔ ∃x∃y A = 〈〈x, y〉, 〈y, x〉〉) |
|
Theorem | dfswap2 4741 |
Express the Swap function via set
construction operators.
(Contributed by SF, 6-Jan-2015.)
|
⊢ Swap = (( ∼
(( Ins2k Ins2k Sk ⊕ ((( Ins2k ( Ins2k Ins3k ( Sk ∘k SIk ◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V)))) ∪ Ins3k SIk SIk (( Ins2k Sk ∩
Ins3k SIk
∼ (( Ins2k Sk ⊕ Ins3k
((◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V))) ∘k Sk ) ∪ ({{0c}} ×k
V))) “k ℘1℘11c)) “k ℘1℘11c)) ∩ Ins3k SIk SIk SIk SIk SIk
Imagek((Imagek(( Ins3k
∼ (( Ins3k Sk ∩ Ins2k
Sk ) “k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V)))) “k ℘1℘1℘1℘1℘1℘11c) ∪ (( Ins2k ( Ins3k
SIk SIk (
Sk ∘k
SIk ◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V)))) ∪ Ins2k Ins3k (( Ins2k
Sk ∩ Ins3k SIk ∼ ((
Ins2k Sk
⊕ Ins3k ((◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V))) ∘k Sk ) ∪ ({{0c}} ×k
V))) “k ℘1℘11c)) “k ℘1℘11c)) ∩ Ins3k SIk SIk SIk SIk SIk ∼ ((
Ins2k Sk
⊕ Ins3k ((◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V))) ∘k Sk ) ∪ ({{0c}} ×k
V))) “k ℘1℘11c)) “k ℘1℘1℘1℘1℘1℘11c))) “k ℘1℘1℘1℘11c) “k ℘11c) “k
V) |
|
Theorem | swapex 4742 |
The Swap function is a set.
(Contributed by SF, 6-Jan-2015.)
|
⊢ Swap ∈ V |
|
Theorem | dfsset2 4743 |
Express the S relationship via the
set construction functors.
(Contributed by SF, 7-Jan-2015.)
|
⊢ S =
⋃1⋃1((((V ×k V)
×k V) ∩ ◡k ∼ (( Ins3k SIk SIk Sk ⊕ Ins2k ( Ins3k ( Sk ∘k SIk ◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V)))) ∪ Ins2k (( Ins2k Sk ∩
Ins3k SIk
∼ (( Ins2k Sk ⊕ Ins3k
((◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V))) ∘k Sk ) ∪ ({{0c}} ×k
V))) “k ℘1℘11c)) “k ℘1℘11c))) “k ℘1℘1℘1℘11c)) “k Sk ) |
|
Theorem | ssetex 4744 |
The subset relationship is a set. (Contributed by SF, 6-Jan-2015.)
|
⊢ S ∈ V |
|
Theorem | dfima2 4745 |
Express the image functor in terms of the set construction functions.
(Contributed by SF, 7-Jan-2015.)
|
⊢ (A “
B) = ((((V ×k (V
×k V)) ∩ ∼ (( Ins3k SIk SIk Sk ⊕ Ins2k ( Ins3k ( Sk ∘k SIk ◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V)))) ∪ Ins2k (( Ins2k Sk ∩
Ins3k SIk
∼ (( Ins2k Sk ⊕ Ins3k
((◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V))) ∘k Sk ) ∪ ({{0c}} ×k
V))) “k ℘1℘11c)) “k ℘1℘11c))) “k ℘1℘1℘1℘11c)) “k ℘1℘1A) “k B) |
|
Theorem | imaexg 4746 |
The image of a set under a set is a set. (Contributed by SF,
7-Jan-2015.)
|
⊢ ((A ∈ V ∧ B ∈ W) →
(A “ B) ∈
V) |
|
Theorem | imaex 4747 |
The image of a set under a set is a set. (Contributed by SF,
7-Jan-2015.)
|
⊢ A ∈ V
& ⊢ B ∈ V ⇒ ⊢ (A “
B) ∈
V |
|
Theorem | dfco1 4748 |
Express Quine composition via Kuratowski composition. (Contributed by
SF, 7-Jan-2015.)
|
⊢ (A ∘ B) =
⋃1⋃1((((V ×k V)
×k V) ∩ ◡k ∼ (( Ins3k SIk SIk Sk ⊕ Ins2k ( Ins3k ( Sk ∘k SIk ◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V)))) ∪ Ins2k (( Ins2k Sk ∩
Ins3k SIk
∼ (( Ins2k Sk ⊕ Ins3k
((◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V))) ∘k Sk ) ∪ ({{0c}} ×k
V))) “k ℘1℘11c)) “k ℘1℘11c))) “k ℘1℘1℘1℘11c)) “k ((((V
×k (V ×k V)) ∩ ∼ (( Ins3k SIk SIk Sk ⊕
Ins2k ( Ins3k ( Sk ∘k SIk ◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V)))) ∪ Ins2k (( Ins2k Sk ∩
Ins3k SIk
∼ (( Ins2k Sk ⊕ Ins3k
((◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V))) ∘k Sk ) ∪ ({{0c}} ×k
V))) “k ℘1℘11c)) “k ℘1℘11c))) “k ℘1℘1℘1℘11c)) “k ℘1℘1A) ∘k (((V
×k (V ×k V)) ∩ ∼ (( Ins3k SIk SIk Sk ⊕
Ins2k ( Ins3k ( Sk ∘k SIk ◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V)))) ∪ Ins2k (( Ins2k Sk ∩
Ins3k SIk
∼ (( Ins2k Sk ⊕ Ins3k
((◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V))) ∘k Sk ) ∪ ({{0c}} ×k
V))) “k ℘1℘11c)) “k ℘1℘11c))) “k ℘1℘1℘1℘11c)) “k ℘1℘1B))) |
|
Theorem | coexg 4749 |
The composition of two sets is a set. (Contributed by SF, 7-Jan-2015.)
|
⊢ ((A ∈ V ∧ B ∈ W) →
(A ∘
B) ∈
V) |
|
Theorem | coex 4750 |
The composition of two sets is a set. (Contributed by SF,
7-Jan-2015.)
|
⊢ A ∈ V
& ⊢ B ∈ V ⇒ ⊢ (A ∘ B) ∈ V |
|
Theorem | dfsi2 4751 |
Express singleton image in terms of the Kuratowski singleton image.
(Contributed by SF, 7-Jan-2015.)
|
⊢ SI A = ⋃1⋃1((((V
×k V) ×k V) ∩ ◡k ∼ (( Ins3k SIk SIk Sk ⊕ Ins2k ( Ins3k ( Sk ∘k SIk ◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V)))) ∪ Ins2k (( Ins2k Sk ∩
Ins3k SIk
∼ (( Ins2k Sk ⊕ Ins3k
((◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V))) ∘k Sk ) ∪ ({{0c}} ×k
V))) “k ℘1℘11c)) “k ℘1℘11c))) “k ℘1℘1℘1℘11c)) “k SIk (((V ×k (V ×k
V)) ∩ ∼ (( Ins3k SIk SIk Sk ⊕ Ins2k
( Ins3k ( Sk
∘k SIk
◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V)))) ∪ Ins2k (( Ins2k Sk ∩
Ins3k SIk
∼ (( Ins2k Sk ⊕ Ins3k
((◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V))) ∘k Sk ) ∪ ({{0c}} ×k
V))) “k ℘1℘11c)) “k ℘1℘11c))) “k ℘1℘1℘1℘11c)) “k ℘1℘1A)) |
|
Theorem | siexg 4752 |
The singleton image of a set is a set. (Contributed by SF,
7-Jan-2015.)
|
⊢ (A ∈ V →
SI A ∈ V) |
|
Theorem | siex 4753 |
The singleton image of a set is a set. (Contributed by SF,
7-Jan-2015.)
|
⊢ A ∈ V ⇒ ⊢ SI A ∈
V |
|
Theorem | elima 4754* |
Membership in an image. Theorem 34 of [Suppes]
p. 65. (Contributed by
SF, 19-Apr-2004.)
|
⊢ (A ∈ (B “
C) ↔ ∃x ∈ C xBA) |
|
Theorem | elima2 4755* |
Membership in an image. Theorem 34 of [Suppes]
p. 65. (Contributed by
SF, 11-Aug-2004.)
|
⊢ (A ∈ (B “
C) ↔ ∃x(x ∈ C ∧ xBA)) |
|
Theorem | elima3 4756* |
Membership in an image. Theorem 34 of [Suppes]
p. 65. (Contributed by
SF, 14-Aug-1994.)
|
⊢ (A ∈ (B “
C) ↔ ∃x(x ∈ C ∧ 〈x, A〉 ∈ B)) |
|
Theorem | brssetg 4757 |
Binary relationship form of the subset relationship. (Contributed by
SF, 11-Feb-2015.)
|
⊢ ((A ∈ V ∧ B ∈ W) →
(A S B ↔ A
⊆ B)) |
|
Theorem | brsset 4758 |
Binary relationship form of the subset relationship. (Contributed by
SF, 11-Feb-2015.)
|
⊢ A ∈ V
& ⊢ B ∈ V ⇒ ⊢ (A S B ↔
A ⊆
B) |
|
Theorem | brssetsn 4759 |
Set membership in terms of the subset relationship. (Contributed by SF,
11-Feb-2015.)
|
⊢ A ∈ V
& ⊢ B ∈ V ⇒ ⊢ ({A} S B ↔
A ∈
B) |
|
Theorem | opelssetsn 4760 |
Set membership in terms of the subset relationship. (Contributed by SF,
11-Feb-2015.)
|
⊢ A ∈ V
& ⊢ B ∈ V ⇒ ⊢ (〈{A}, B〉 ∈ S ↔ A ∈ B) |
|
Theorem | brsi 4761* |
Binary relationship over a singleton image. (Contributed by SF,
11-Feb-2015.)
|
⊢ (A SI RB ↔ ∃x∃y(A = {x} ∧ B = {y} ∧ xRy)) |
|
2.3.6 Epsilon and identity
relations
|
|
Syntax | cep 4762 |
Extend class notation to include the epsilon relation.
|
class
E |
|
Syntax | cid 4763 |
Extend the definition of a class to include identity relation.
|
class
I |
|
Definition | df-eprel 4764* |
Define the epsilon relation. Similar to Definition 6.22 of
[TakeutiZaring] p. 30.
(Contributed by SF, 5-Jan-2015.)
|
⊢ E = {〈x, y〉 ∣ x ∈ y} |
|
Theorem | epelc 4765 |
The epsilon relation and the membership relation are the same.
(Contributed by NM, 13-Aug-1995.)
|
⊢ B ∈ V ⇒ ⊢ (A E
B ↔ A ∈ B) |
|
Theorem | epel 4766 |
The epsilon relation and the membership relation are the same.
(Contributed by NM, 13-Aug-1995.)
|
⊢ (x E
y ↔ x ∈ y) |
|
Definition | df-id 4767* |
Define the identity relation. Definition 9.15 of [Quine] p. 64.
(Contributed by SF, 5-Jan-2015.)
|
⊢ I = {〈x, y〉 ∣ x =
y} |
|
Theorem | dfid3 4768 |
A stronger version of df-id 4767 that doesn't require x and y to be
distinct. Ordinarily, we wouldn't use this as a definition, since
non-distinct dummy variables would make soundness verification more
difficult (as the proof here shows). The proof can be instructive in
showing how distinct variable requirements may be eliminated, a task
that is not necessarily obvious. (Contributed by NM, 5-Feb-2008.)
(Revised by Mario Carneiro, 18-Nov-2016.)
|
⊢ I = {〈x, y〉 ∣ x =
y} |
|
Theorem | dfid2 4769 |
Alternate definition of the identity relation. (Contributed by NM,
15-Mar-2007.)
|
⊢ I = {〈x, x〉 ∣ x =
x} |
|
2.3.7 Functions and relations
|
|
Syntax | cxp 4770 |
Extend the definition of a class to include the cross product.
|
class
(A × B) |
|
Syntax | ccnv 4771 |
Extend the definition of a class to include the converse of a class.
|
class
◡A |
|
Syntax | cdm 4772 |
Extend the definition of a class to include the domain of a class.
|
class
dom A |
|
Syntax | crn 4773 |
Extend the definition of a class to include the range of a class.
|
class
ran A |
|
Syntax | cres 4774 |
Extend the definition of a class to include the restriction of a class.
(Read: The restriction of A to B.)
|
class
(A ↾ B) |
|
Syntax | wfun 4775 |
Extend the definition of a wff to include the function predicate. (Read:
A is a function.)
|
wff
Fun A |
|
Syntax | wfn 4776 |
Extend the definition of a wff to include the function predicate with a
domain. (Read: A is a
function on B.)
|
wff
A Fn B |
|
Syntax | wf 4777 |
Extend the definition of a wff to include the function predicate with
domain and codomain. (Read: F maps A into B.)
|
wff
F:A–→B |
|
Syntax | wf1 4778 |
Extend the definition of a wff to include one-to-one functions. (Read:
F maps A one-to-one into B.) The notation ("1-1" above the
arrow) is from Definition 6.15(5) of [TakeutiZaring] p. 27.
|
wff
F:A–1-1→B |
|
Syntax | wfo 4779 |
Extend the definition of a wff to include onto functions. (Read: F
maps A onto B.) The notation ("onto"
below the arrow) is from
Definition 6.15(4) of [TakeutiZaring] p. 27.
|
wff
F:A–onto→B |
|
Syntax | wf1o 4780 |
Extend the definition of a wff to include one-to-one onto functions.
(Read: F maps A one-to-one onto B.) The notation ("1-1"
above the arrow and "onto" below the arrow) is from Definition
6.15(6) of
[TakeutiZaring] p. 27.
|
wff
F:A–1-1-onto→B |
|
Syntax | cfv 4781 |
Extend the definition of a class to include the value of a function.
(Read: The value of F
at A, or "F of A.")
|
class
(F ‘A) |
|
Syntax | wiso 4782 |
Extend the definition of a wff to include the isomorphism property.
(Read: H is an R, S isomorphism of A onto B.)
|
wff
H Isom R, S (A, B) |
|
Syntax | c2nd 4783 |
Extend the definition of a class to include the second function.
|
class
2nd |
|
Definition | df-xp 4784* |
Define the cross product of two classes. Definition 9.11 of [Quine]
p. 64. (Contributed by SF, 5-Jan-2015.)
|
⊢ (A ×
B) = {〈x, y〉 ∣ (x ∈ A ∧ y ∈ B)} |
|
Definition | df-cnv 4785* |
Define the converse of a class. Definition 9.12 of [Quine] p. 64. We
use Quine's breve accent (smile) notation. Like Quine, we use it as a
prefix, which eliminates the need for parentheses. Many authors use the
postfix superscript "to the minus one." "Converse"
is Quine's
terminology; some authors call it "inverse," especially when
the
argument is a function. (Contributed by SF, 5-Jan-2015.)
|
⊢ ◡A =
{〈x,
y〉 ∣ yAx} |
|
Definition | df-rn 4786 |
Define the range of a class. The notation "ran " is
used by
Enderton; other authors sometimes use script R or script W. (Contributed
by SF, 5-Jan-2015.)
|
⊢ ran A =
(A “ V) |
|
Definition | df-dm 4787 |
Define the domain of a class. The notation "dom " is
used by
Enderton; other authors sometimes use script D. (Contributed by SF,
5-Jan-2015.)
|
⊢ dom A = ran
◡A |
|
Definition | df-res 4788 |
Define the restriction of a class. Definition 6.6(1) of [TakeutiZaring]
p. 24. (Contributed by SF, 5-Jan-2015.)
|
⊢ (A ↾ B) =
(A ∩ (B × V)) |
|
Definition | df-fun 4789 |
Define a function. Definition 10.1 of [Quine] p.
65. For alternate
definitions, see dffun2 5119, dffun3 5120, dffun4 5121, dffun5 5122, dffun6 5124,
dffun7 5133, dffun8 5134, and dffun9 5135. (Contributed by SF, 5-Jan-2015.)
(Revised by Scott Fenton, 14-Apr-2021.)
|
⊢ (Fun A
↔ (A ∘ ◡A)
⊆ I ) |
|
Definition | df-fn 4790 |
Define a function with domain. Definition 6.15(1) of [TakeutiZaring]
p. 27. For alternate definitions, see dffn2 5224, dffn3 5229, dffn4 5275, and
dffn5 5363. (Contributed by SF, 5-Jan-2015.)
|
⊢ (A Fn
B ↔ (Fun A ∧ dom A = B)) |
|
Definition | df-f 4791 |
Define a function (mapping) with domain and codomain. Definition
6.15(3) of [TakeutiZaring] p. 27.
For alternate definitions, see
dff2 5419, dff3 5420, and dff4 5421.
(Contributed by SF, 5-Jan-2015.)
|
⊢ (F:A–→B
↔ (F Fn A ∧ ran F ⊆ B)) |
|
Definition | df-f1 4792 |
Define a one-to-one function. For equivalent definitions see dff12 5257
and dff13 5471. Compare Definition 6.15(5) of [TakeutiZaring] p. 27. We
use their notation ("1-1" above the arrow). (Contributed by
SF,
5-Jan-2015.)
|
⊢ (F:A–1-1→B ↔
(F:A–→B
∧ Fun ◡F)) |
|
Definition | df-fo 4793 |
Define an onto function. Definition 6.15(4) of [TakeutiZaring] p. 27.
We use their notation ("onto" under the arrow). For alternate
definitions, see dffo2 5273, dffo3 5422, dffo4 5423, and dffo5 5424.
(Contributed by SF, 5-Jan-2015.)
|
⊢ (F:A–onto→B ↔
(F Fn A ∧ ran F = B)) |
|
Definition | df-f1o 4794 |
Define a one-to-one onto function. For equivalent definitions see
dff1o2 5291, dff1o3 5292, dff1o4 5294, and dff1o5 5295. Compare Definition
6.15(6) of [TakeutiZaring] p. 27.
We use their notation ("1-1" above
the arrow and "onto" below the arrow). (Contributed by SF,
5-Jan-2015.)
|
⊢ (F:A–1-1-onto→B ↔
(F:A–1-1→B ∧ F:A–onto→B)) |
|
Definition | df-fv 4795* |
Define the value of a function. (Contributed by SF, 5-Jan-2015.)
|
⊢ (F
‘A) = (℩xAFx) |
|
Definition | df-iso 4796* |
Define the isomorphism predicate. We read this as "H is an R,
S isomorphism of A onto B." Normally, R and S are
ordering relations on A and B respectively. Definition 6.28 of
[TakeutiZaring] p. 32, whose
notation is the same as ours except that
R and S are subscripts. (Contributed by SF,
5-Jan-2015.)
|
⊢ (H Isom
R, S
(A, B)
↔ (H:A–1-1-onto→B ∧ ∀x ∈ A ∀y ∈ A (xRy ↔
(H ‘x)S(H ‘y)))) |
|
Definition | df-2nd 4797* |
Define the 2nd function. This function extracts the
second member
of an ordered pair. (Contributed by SF, 5-Jan-2015.)
|
⊢ 2nd = {〈x, y〉 ∣ ∃z x = 〈z, y〉} |
|
Theorem | xpeq1 4798 |
Equality theorem for cross product. (Contributed by NM, 4-Jul-1994.)
|
⊢ (A =
B → (A × C) =
(B × C)) |
|
Theorem | xpeq2 4799 |
Equality theorem for cross product. (Contributed by NM, 5-Jul-1994.)
|
⊢ (A =
B → (C × A) =
(C × B)) |
|
Theorem | elxpi 4800* |
Membership in a cross product. Uses fewer axioms than elxp 4801.
(Contributed by NM, 4-Jul-1994.)
|
⊢ (A ∈ (B ×
C) → ∃x∃y(A = 〈x, y〉 ∧ (x ∈ B ∧ y ∈ C))) |