Detailed syntax breakdown of Definition df-ins3k
| Step | Hyp | Ref
 | Expression | 
| 1 |   | cA | 
. . 3
class A | 
| 2 | 1 | cins3k 4178 | 
. 2
class  Ins3k A | 
| 3 |   | vx | 
. . . . . . . 8
setvar x | 
| 4 | 3 | cv 1641 | 
. . . . . . 7
class x | 
| 5 |   | vy | 
. . . . . . . . 9
setvar y | 
| 6 | 5 | cv 1641 | 
. . . . . . . 8
class y | 
| 7 |   | vz | 
. . . . . . . . 9
setvar z | 
| 8 | 7 | cv 1641 | 
. . . . . . . 8
class z | 
| 9 | 6, 8 | copk 4058 | 
. . . . . . 7
class ⟪y, z⟫ | 
| 10 | 4, 9 | wceq 1642 | 
. . . . . 6
wff x =
⟪y, z⟫ | 
| 11 |   | vt | 
. . . . . . . . . . . . . 14
setvar t | 
| 12 | 11 | cv 1641 | 
. . . . . . . . . . . . 13
class t | 
| 13 | 12 | csn 3738 | 
. . . . . . . . . . . 12
class {t} | 
| 14 | 13 | csn 3738 | 
. . . . . . . . . . 11
class {{t}} | 
| 15 | 6, 14 | wceq 1642 | 
. . . . . . . . . 10
wff y =
{{t}} | 
| 16 |   | vu | 
. . . . . . . . . . . . 13
setvar u | 
| 17 | 16 | cv 1641 | 
. . . . . . . . . . . 12
class u | 
| 18 |   | vv | 
. . . . . . . . . . . . 13
setvar v | 
| 19 | 18 | cv 1641 | 
. . . . . . . . . . . 12
class v | 
| 20 | 17, 19 | copk 4058 | 
. . . . . . . . . . 11
class ⟪u, v⟫ | 
| 21 | 8, 20 | wceq 1642 | 
. . . . . . . . . 10
wff z =
⟪u, v⟫ | 
| 22 | 12, 17 | copk 4058 | 
. . . . . . . . . . 11
class ⟪t, u⟫ | 
| 23 | 22, 1 | wcel 1710 | 
. . . . . . . . . 10
wff ⟪t, u⟫
∈ A | 
| 24 | 15, 21, 23 | w3a 934 | 
. . . . . . . . 9
wff (y
= {{t}} ∧
z = ⟪u, v⟫
∧ ⟪t, u⟫
∈ A) | 
| 25 | 24, 18 | wex 1541 | 
. . . . . . . 8
wff ∃v(y = {{t}} ∧ z =
⟪u, v⟫ ∧
⟪t, u⟫ ∈
A) | 
| 26 | 25, 16 | wex 1541 | 
. . . . . . 7
wff ∃u∃v(y = {{t}} ∧ z =
⟪u, v⟫ ∧
⟪t, u⟫ ∈
A) | 
| 27 | 26, 11 | wex 1541 | 
. . . . . 6
wff ∃t∃u∃v(y = {{t}} ∧ z =
⟪u, v⟫ ∧
⟪t, u⟫ ∈
A) | 
| 28 | 10, 27 | wa 358 | 
. . . . 5
wff (x
= ⟪y, z⟫ ∧ ∃t∃u∃v(y = {{t}} ∧ z =
⟪u, v⟫ ∧
⟪t, u⟫ ∈
A)) | 
| 29 | 28, 7 | wex 1541 | 
. . . 4
wff ∃z(x = ⟪y,
z⟫ ∧ ∃t∃u∃v(y = {{t}} ∧ z = ⟪u,
v⟫ ∧ ⟪t,
u⟫ ∈ A)) | 
| 30 | 29, 5 | wex 1541 | 
. . 3
wff ∃y∃z(x = ⟪y,
z⟫ ∧ ∃t∃u∃v(y = {{t}} ∧ z = ⟪u,
v⟫ ∧ ⟪t,
u⟫ ∈ A)) | 
| 31 | 30, 3 | cab 2339 | 
. 2
class {x ∣ ∃y∃z(x = ⟪y,
z⟫ ∧ ∃t∃u∃v(y = {{t}} ∧ z = ⟪u,
v⟫ ∧ ⟪t,
u⟫ ∈ A))} | 
| 32 | 2, 31 | wceq 1642 | 
1
wff  Ins3k A = {x ∣ ∃y∃z(x =
⟪y, z⟫ ∧ ∃t∃u∃v(y = {{t}} ∧ z =
⟪u, v⟫ ∧
⟪t, u⟫ ∈
A))} |