Detailed syntax breakdown of Definition df-ins3k
Step | Hyp | Ref
| Expression |
1 | | cA |
. . 3
class A |
2 | 1 | cins3k 4178 |
. 2
class Ins3k A |
3 | | vx |
. . . . . . . 8
setvar x |
4 | 3 | cv 1641 |
. . . . . . 7
class x |
5 | | vy |
. . . . . . . . 9
setvar y |
6 | 5 | cv 1641 |
. . . . . . . 8
class y |
7 | | vz |
. . . . . . . . 9
setvar z |
8 | 7 | cv 1641 |
. . . . . . . 8
class z |
9 | 6, 8 | copk 4058 |
. . . . . . 7
class ⟪y, z⟫ |
10 | 4, 9 | wceq 1642 |
. . . . . 6
wff x =
⟪y, z⟫ |
11 | | vt |
. . . . . . . . . . . . . 14
setvar t |
12 | 11 | cv 1641 |
. . . . . . . . . . . . 13
class t |
13 | 12 | csn 3738 |
. . . . . . . . . . . 12
class {t} |
14 | 13 | csn 3738 |
. . . . . . . . . . 11
class {{t}} |
15 | 6, 14 | wceq 1642 |
. . . . . . . . . 10
wff y =
{{t}} |
16 | | vu |
. . . . . . . . . . . . 13
setvar u |
17 | 16 | cv 1641 |
. . . . . . . . . . . 12
class u |
18 | | vv |
. . . . . . . . . . . . 13
setvar v |
19 | 18 | cv 1641 |
. . . . . . . . . . . 12
class v |
20 | 17, 19 | copk 4058 |
. . . . . . . . . . 11
class ⟪u, v⟫ |
21 | 8, 20 | wceq 1642 |
. . . . . . . . . 10
wff z =
⟪u, v⟫ |
22 | 12, 17 | copk 4058 |
. . . . . . . . . . 11
class ⟪t, u⟫ |
23 | 22, 1 | wcel 1710 |
. . . . . . . . . 10
wff ⟪t, u⟫
∈ A |
24 | 15, 21, 23 | w3a 934 |
. . . . . . . . 9
wff (y
= {{t}} ∧
z = ⟪u, v⟫
∧ ⟪t, u⟫
∈ A) |
25 | 24, 18 | wex 1541 |
. . . . . . . 8
wff ∃v(y = {{t}} ∧ z =
⟪u, v⟫ ∧
⟪t, u⟫ ∈
A) |
26 | 25, 16 | wex 1541 |
. . . . . . 7
wff ∃u∃v(y = {{t}} ∧ z =
⟪u, v⟫ ∧
⟪t, u⟫ ∈
A) |
27 | 26, 11 | wex 1541 |
. . . . . 6
wff ∃t∃u∃v(y = {{t}} ∧ z =
⟪u, v⟫ ∧
⟪t, u⟫ ∈
A) |
28 | 10, 27 | wa 358 |
. . . . 5
wff (x
= ⟪y, z⟫ ∧ ∃t∃u∃v(y = {{t}} ∧ z =
⟪u, v⟫ ∧
⟪t, u⟫ ∈
A)) |
29 | 28, 7 | wex 1541 |
. . . 4
wff ∃z(x = ⟪y,
z⟫ ∧ ∃t∃u∃v(y = {{t}} ∧ z = ⟪u,
v⟫ ∧ ⟪t,
u⟫ ∈ A)) |
30 | 29, 5 | wex 1541 |
. . 3
wff ∃y∃z(x = ⟪y,
z⟫ ∧ ∃t∃u∃v(y = {{t}} ∧ z = ⟪u,
v⟫ ∧ ⟪t,
u⟫ ∈ A)) |
31 | 30, 3 | cab 2339 |
. 2
class {x ∣ ∃y∃z(x = ⟪y,
z⟫ ∧ ∃t∃u∃v(y = {{t}} ∧ z = ⟪u,
v⟫ ∧ ⟪t,
u⟫ ∈ A))} |
32 | 2, 31 | wceq 1642 |
1
wff Ins3k A = {x ∣ ∃y∃z(x =
⟪y, z⟫ ∧ ∃t∃u∃v(y = {{t}} ∧ z =
⟪u, v⟫ ∧
⟪t, u⟫ ∈
A))} |