New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > opkelins3kg | GIF version |
Description: Kuratowski ordered pair membership in Kuratowski insertion operator. (Contributed by SF, 12-Jan-2015.) |
Ref | Expression |
---|---|
opkelins3kg | ⊢ ((A ∈ V ∧ B ∈ W) → (⟪A, B⟫ ∈ Ins3k C ↔ ∃x∃y∃z(A = {{x}} ∧ B = ⟪y, z⟫ ∧ ⟪x, y⟫ ∈ C))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ins3k 4189 | . 2 ⊢ Ins3k C = {t ∣ ∃w∃u(t = ⟪w, u⟫ ∧ ∃x∃y∃z(w = {{x}} ∧ u = ⟪y, z⟫ ∧ ⟪x, y⟫ ∈ C))} | |
2 | eqeq1 2359 | . . . 4 ⊢ (w = A → (w = {{x}} ↔ A = {{x}})) | |
3 | 2 | 3anbi1d 1256 | . . 3 ⊢ (w = A → ((w = {{x}} ∧ u = ⟪y, z⟫ ∧ ⟪x, y⟫ ∈ C) ↔ (A = {{x}} ∧ u = ⟪y, z⟫ ∧ ⟪x, y⟫ ∈ C))) |
4 | 3 | 3exbidv 1629 | . 2 ⊢ (w = A → (∃x∃y∃z(w = {{x}} ∧ u = ⟪y, z⟫ ∧ ⟪x, y⟫ ∈ C) ↔ ∃x∃y∃z(A = {{x}} ∧ u = ⟪y, z⟫ ∧ ⟪x, y⟫ ∈ C))) |
5 | eqeq1 2359 | . . . 4 ⊢ (u = B → (u = ⟪y, z⟫ ↔ B = ⟪y, z⟫)) | |
6 | 5 | 3anbi2d 1257 | . . 3 ⊢ (u = B → ((A = {{x}} ∧ u = ⟪y, z⟫ ∧ ⟪x, y⟫ ∈ C) ↔ (A = {{x}} ∧ B = ⟪y, z⟫ ∧ ⟪x, y⟫ ∈ C))) |
7 | 6 | 3exbidv 1629 | . 2 ⊢ (u = B → (∃x∃y∃z(A = {{x}} ∧ u = ⟪y, z⟫ ∧ ⟪x, y⟫ ∈ C) ↔ ∃x∃y∃z(A = {{x}} ∧ B = ⟪y, z⟫ ∧ ⟪x, y⟫ ∈ C))) |
8 | 1, 4, 7 | opkelopkabg 4246 | 1 ⊢ ((A ∈ V ∧ B ∈ W) → (⟪A, B⟫ ∈ Ins3k C ↔ ∃x∃y∃z(A = {{x}} ∧ B = ⟪y, z⟫ ∧ ⟪x, y⟫ ∈ C))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∧ w3a 934 ∃wex 1541 = wceq 1642 ∈ wcel 1710 {csn 3738 ⟪copk 4058 Ins3k cins3k 4178 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-sn 3742 df-pr 3743 df-opk 4059 df-ins3k 4189 |
This theorem is referenced by: otkelins3kg 4255 ins3kss 4281 |
Copyright terms: Public domain | W3C validator |