Detailed syntax breakdown of Definition df-spac
| Step | Hyp | Ref
 | Expression | 
| 1 |   | cspac 6274 | 
. 2
class  Spac | 
| 2 |   | vm | 
. . 3
setvar m | 
| 3 |   | cncs 6089 | 
. . 3
class  NC | 
| 4 | 2 | cv 1641 | 
. . . . 5
class m | 
| 5 | 4 | csn 3738 | 
. . . 4
class {m} | 
| 6 |   | vx | 
. . . . . . . 8
setvar x | 
| 7 | 6 | cv 1641 | 
. . . . . . 7
class x | 
| 8 | 7, 3 | wcel 1710 | 
. . . . . 6
wff x
∈ NC | 
| 9 |   | vy | 
. . . . . . . 8
setvar y | 
| 10 | 9 | cv 1641 | 
. . . . . . 7
class y | 
| 11 | 10, 3 | wcel 1710 | 
. . . . . 6
wff y
∈ NC | 
| 12 |   | c2c 6095 | 
. . . . . . . 8
class 2c | 
| 13 |   | cce 6097 | 
. . . . . . . 8
class 
↑c | 
| 14 | 12, 7, 13 | co 5526 | 
. . . . . . 7
class (2c
↑c x) | 
| 15 | 10, 14 | wceq 1642 | 
. . . . . 6
wff y =
(2c ↑c x) | 
| 16 | 8, 11, 15 | w3a 934 | 
. . . . 5
wff (x
∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x)) | 
| 17 | 16, 6, 9 | copab 4623 | 
. . . 4
class {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))} | 
| 18 | 5, 17 | cclos1 5873 | 
. . 3
class  Clos1
({m}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) | 
| 19 | 2, 3, 18 | cmpt 5652 | 
. 2
class (m ∈ NC ↦  Clos1 ({m}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})) | 
| 20 | 1, 19 | wceq 1642 | 
1
wff  Spac = (m
∈ NC ↦  Clos1 ({m}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c
x))})) |