Detailed syntax breakdown of Definition df-spac
| Step | Hyp | Ref
| Expression |
| 1 | | cspac 6274 |
. 2
class Spac |
| 2 | | vm |
. . 3
setvar m |
| 3 | | cncs 6089 |
. . 3
class NC |
| 4 | 2 | cv 1641 |
. . . . 5
class m |
| 5 | 4 | csn 3738 |
. . . 4
class {m} |
| 6 | | vx |
. . . . . . . 8
setvar x |
| 7 | 6 | cv 1641 |
. . . . . . 7
class x |
| 8 | 7, 3 | wcel 1710 |
. . . . . 6
wff x
∈ NC |
| 9 | | vy |
. . . . . . . 8
setvar y |
| 10 | 9 | cv 1641 |
. . . . . . 7
class y |
| 11 | 10, 3 | wcel 1710 |
. . . . . 6
wff y
∈ NC |
| 12 | | c2c 6095 |
. . . . . . . 8
class 2c |
| 13 | | cce 6097 |
. . . . . . . 8
class
↑c |
| 14 | 12, 7, 13 | co 5526 |
. . . . . . 7
class (2c
↑c x) |
| 15 | 10, 14 | wceq 1642 |
. . . . . 6
wff y =
(2c ↑c x) |
| 16 | 8, 11, 15 | w3a 934 |
. . . . 5
wff (x
∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x)) |
| 17 | 16, 6, 9 | copab 4623 |
. . . 4
class {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))} |
| 18 | 5, 17 | cclos1 5873 |
. . 3
class Clos1
({m}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) |
| 19 | 2, 3, 18 | cmpt 5652 |
. 2
class (m ∈ NC ↦ Clos1 ({m}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})) |
| 20 | 1, 19 | wceq 1642 |
1
wff Spac = (m
∈ NC ↦ Clos1 ({m}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c
x))})) |