NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nncdiv3lem1 GIF version

Theorem nncdiv3lem1 6276
Description: Lemma for nncdiv3 6278. Set up a helper for stratification. (Contributed by SF, 3-Mar-2015.)
Assertion
Ref Expression
nncdiv3lem1 (n, b ran ( Ins3 ((ran (1st ⊗ (1st ∩ 2nd )) ⊗ 2nd ) “ AddC ) ∩ (((1st 1st ) ⊗ ((2nd 1st ) ⊗ 2nd )) “ AddC )) ↔ b = ((n +c n) +c n))

Proof of Theorem nncdiv3lem1
Dummy variables m t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elrn2 4898 . 2 (n, b ran ( Ins3 ((ran (1st ⊗ (1st ∩ 2nd )) ⊗ 2nd ) “ AddC ) ∩ (((1st 1st ) ⊗ ((2nd 1st ) ⊗ 2nd )) “ AddC )) ↔ mm, n, b ( Ins3 ((ran (1st ⊗ (1st ∩ 2nd )) ⊗ 2nd ) “ AddC ) ∩ (((1st 1st ) ⊗ ((2nd 1st ) ⊗ 2nd )) “ AddC )))
2 elin 3220 . . . 4 (m, n, b ( Ins3 ((ran (1st ⊗ (1st ∩ 2nd )) ⊗ 2nd ) “ AddC ) ∩ (((1st 1st ) ⊗ ((2nd 1st ) ⊗ 2nd )) “ AddC )) ↔ (m, n, b Ins3 ((ran (1st ⊗ (1st ∩ 2nd )) ⊗ 2nd ) “ AddC ) m, n, b (((1st 1st ) ⊗ ((2nd 1st ) ⊗ 2nd )) “ AddC )))
3 vex 2863 . . . . . . 7 b V
43otelins3 5793 . . . . . 6 (m, n, b Ins3 ((ran (1st ⊗ (1st ∩ 2nd )) ⊗ 2nd ) “ AddC ) ↔ m, n ((ran (1st ⊗ (1st ∩ 2nd )) ⊗ 2nd ) “ AddC ))
5 opelcnv 4894 . . . . . 6 (m, n ((ran (1st ⊗ (1st ∩ 2nd )) ⊗ 2nd ) “ AddC ) ↔ n, m ((ran (1st ⊗ (1st ∩ 2nd )) ⊗ 2nd ) “ AddC ))
6 trtxp 5782 . . . . . . . . . 10 (t(ran (1st ⊗ (1st ∩ 2nd )) ⊗ 2nd )n, m ↔ (tran (1st ⊗ (1st ∩ 2nd ))n t2nd m))
7 df-br 4641 . . . . . . . . . . . 12 (tran (1st ⊗ (1st ∩ 2nd ))nt, n ran (1st ⊗ (1st ∩ 2nd )))
8 elrn2 4898 . . . . . . . . . . . 12 (t, n ran (1st ⊗ (1st ∩ 2nd )) ↔ mm, t, n (1st ⊗ (1st ∩ 2nd )))
9 vex 2863 . . . . . . . . . . . . . . 15 t V
109proj1ex 4594 . . . . . . . . . . . . . 14 Proj1 t V
1110eqvinc 2967 . . . . . . . . . . . . 13 ( Proj1 t = n, nm(m = Proj1 t m = n, n))
12 opeq 4620 . . . . . . . . . . . . . . 15 t = Proj1 t, Proj2 t
1312breq1i 4647 . . . . . . . . . . . . . 14 (t1st n, n Proj1 t, Proj2 t1st n, n)
149proj2ex 4595 . . . . . . . . . . . . . . 15 Proj2 t V
1510, 14opbr1st 5502 . . . . . . . . . . . . . 14 ( Proj1 t, Proj2 t1st n, n Proj1 t = n, n)
1613, 15bitri 240 . . . . . . . . . . . . 13 (t1st n, n Proj1 t = n, n)
17 oteltxp 5783 . . . . . . . . . . . . . . 15 (m, t, n (1st ⊗ (1st ∩ 2nd )) ↔ (m, t 1st m, n (1st ∩ 2nd )))
18 opelcnv 4894 . . . . . . . . . . . . . . . . 17 (m, t 1stt, m 1st )
19 df-br 4641 . . . . . . . . . . . . . . . . 17 (t1st mt, m 1st )
2012breq1i 4647 . . . . . . . . . . . . . . . . . 18 (t1st m Proj1 t, Proj2 t1st m)
2110, 14opbr1st 5502 . . . . . . . . . . . . . . . . . 18 ( Proj1 t, Proj2 t1st m Proj1 t = m)
22 eqcom 2355 . . . . . . . . . . . . . . . . . 18 ( Proj1 t = mm = Proj1 t)
2320, 21, 223bitri 262 . . . . . . . . . . . . . . . . 17 (t1st mm = Proj1 t)
2418, 19, 233bitr2i 264 . . . . . . . . . . . . . . . 16 (m, t 1stm = Proj1 t)
25 elin 3220 . . . . . . . . . . . . . . . . 17 (m, n (1st ∩ 2nd ) ↔ (m, n 1st m, n 2nd ))
26 df-br 4641 . . . . . . . . . . . . . . . . . 18 (m1st nm, n 1st )
27 df-br 4641 . . . . . . . . . . . . . . . . . 18 (m2nd nm, n 2nd )
2826, 27anbi12i 678 . . . . . . . . . . . . . . . . 17 ((m1st n m2nd n) ↔ (m, n 1st m, n 2nd ))
29 vex 2863 . . . . . . . . . . . . . . . . . 18 n V
3029, 29op1st2nd 5791 . . . . . . . . . . . . . . . . 17 ((m1st n m2nd n) ↔ m = n, n)
3125, 28, 303bitr2i 264 . . . . . . . . . . . . . . . 16 (m, n (1st ∩ 2nd ) ↔ m = n, n)
3224, 31anbi12i 678 . . . . . . . . . . . . . . 15 ((m, t 1st m, n (1st ∩ 2nd )) ↔ (m = Proj1 t m = n, n))
3317, 32bitri 240 . . . . . . . . . . . . . 14 (m, t, n (1st ⊗ (1st ∩ 2nd )) ↔ (m = Proj1 t m = n, n))
3433exbii 1582 . . . . . . . . . . . . 13 (mm, t, n (1st ⊗ (1st ∩ 2nd )) ↔ m(m = Proj1 t m = n, n))
3511, 16, 343bitr4ri 269 . . . . . . . . . . . 12 (mm, t, n (1st ⊗ (1st ∩ 2nd )) ↔ t1st n, n)
367, 8, 353bitri 262 . . . . . . . . . . 11 (tran (1st ⊗ (1st ∩ 2nd ))nt1st n, n)
3736anbi1i 676 . . . . . . . . . 10 ((tran (1st ⊗ (1st ∩ 2nd ))n t2nd m) ↔ (t1st n, n t2nd m))
3829, 29opex 4589 . . . . . . . . . . 11 n, n V
39 vex 2863 . . . . . . . . . . 11 m V
4038, 39op1st2nd 5791 . . . . . . . . . 10 ((t1st n, n t2nd m) ↔ t = n, n, m)
416, 37, 403bitri 262 . . . . . . . . 9 (t(ran (1st ⊗ (1st ∩ 2nd )) ⊗ 2nd )n, mt = n, n, m)
4241rexbii 2640 . . . . . . . 8 (t AddC t(ran (1st ⊗ (1st ∩ 2nd )) ⊗ 2nd )n, mt AddC t = n, n, m)
43 elima 4755 . . . . . . . 8 (n, m ((ran (1st ⊗ (1st ∩ 2nd )) ⊗ 2nd ) “ AddC ) ↔ t AddC t(ran (1st ⊗ (1st ∩ 2nd )) ⊗ 2nd )n, m)
44 df-br 4641 . . . . . . . . 9 (n, n AddC mn, n, m AddC )
45 risset 2662 . . . . . . . . 9 (n, n, m AddCt AddC t = n, n, m)
4644, 45bitri 240 . . . . . . . 8 (n, n AddC mt AddC t = n, n, m)
4742, 43, 463bitr4i 268 . . . . . . 7 (n, m ((ran (1st ⊗ (1st ∩ 2nd )) ⊗ 2nd ) “ AddC ) ↔ n, n AddC m)
4829, 29braddcfn 5827 . . . . . . 7 (n, n AddC m ↔ (n +c n) = m)
49 eqcom 2355 . . . . . . 7 ((n +c n) = mm = (n +c n))
5047, 48, 493bitri 262 . . . . . 6 (n, m ((ran (1st ⊗ (1st ∩ 2nd )) ⊗ 2nd ) “ AddC ) ↔ m = (n +c n))
514, 5, 503bitri 262 . . . . 5 (m, n, b Ins3 ((ran (1st ⊗ (1st ∩ 2nd )) ⊗ 2nd ) “ AddC ) ↔ m = (n +c n))
52 elima 4755 . . . . . . 7 (m, n, b (((1st 1st ) ⊗ ((2nd 1st ) ⊗ 2nd )) “ AddC ) ↔ t AddC t((1st 1st ) ⊗ ((2nd 1st ) ⊗ 2nd ))m, n, b)
53 trtxp 5782 . . . . . . . . 9 (t((1st 1st ) ⊗ ((2nd 1st ) ⊗ 2nd ))m, n, b ↔ (t(1st 1st )m t((2nd 1st ) ⊗ 2nd )n, b))
54 trtxp 5782 . . . . . . . . . . 11 (t((2nd 1st ) ⊗ 2nd )n, b ↔ (t(2nd 1st )n t2nd b))
5554anbi2i 675 . . . . . . . . . 10 ((t(1st 1st )m t((2nd 1st ) ⊗ 2nd )n, b) ↔ (t(1st 1st )m (t(2nd 1st )n t2nd b)))
56 anass 630 . . . . . . . . . 10 (((t(1st 1st )m t(2nd 1st )n) t2nd b) ↔ (t(1st 1st )m (t(2nd 1st )n t2nd b)))
5739, 29op1st2nd 5791 . . . . . . . . . . . 12 (( Proj1 t1st m Proj1 t2nd n) ↔ Proj1 t = m, n)
58 brco 4884 . . . . . . . . . . . . . 14 (t(1st 1st )mn(t1st n n1st m))
5912breq1i 4647 . . . . . . . . . . . . . . . . 17 (t1st n Proj1 t, Proj2 t1st n)
6010, 14opbr1st 5502 . . . . . . . . . . . . . . . . 17 ( Proj1 t, Proj2 t1st n Proj1 t = n)
61 eqcom 2355 . . . . . . . . . . . . . . . . 17 ( Proj1 t = nn = Proj1 t)
6259, 60, 613bitri 262 . . . . . . . . . . . . . . . 16 (t1st nn = Proj1 t)
6362anbi1i 676 . . . . . . . . . . . . . . 15 ((t1st n n1st m) ↔ (n = Proj1 t n1st m))
6463exbii 1582 . . . . . . . . . . . . . 14 (n(t1st n n1st m) ↔ n(n = Proj1 t n1st m))
65 breq1 4643 . . . . . . . . . . . . . . 15 (n = Proj1 t → (n1st m Proj1 t1st m))
6610, 65ceqsexv 2895 . . . . . . . . . . . . . 14 (n(n = Proj1 t n1st m) ↔ Proj1 t1st m)
6758, 64, 663bitri 262 . . . . . . . . . . . . 13 (t(1st 1st )m Proj1 t1st m)
68 brco 4884 . . . . . . . . . . . . . 14 (t(2nd 1st )nm(t1st m m2nd n))
6923anbi1i 676 . . . . . . . . . . . . . . 15 ((t1st m m2nd n) ↔ (m = Proj1 t m2nd n))
7069exbii 1582 . . . . . . . . . . . . . 14 (m(t1st m m2nd n) ↔ m(m = Proj1 t m2nd n))
71 breq1 4643 . . . . . . . . . . . . . . 15 (m = Proj1 t → (m2nd n Proj1 t2nd n))
7210, 71ceqsexv 2895 . . . . . . . . . . . . . 14 (m(m = Proj1 t m2nd n) ↔ Proj1 t2nd n)
7368, 70, 723bitri 262 . . . . . . . . . . . . 13 (t(2nd 1st )n Proj1 t2nd n)
7467, 73anbi12i 678 . . . . . . . . . . . 12 ((t(1st 1st )m t(2nd 1st )n) ↔ ( Proj1 t1st m Proj1 t2nd n))
7512breq1i 4647 . . . . . . . . . . . . 13 (t1st m, n Proj1 t, Proj2 t1st m, n)
7610, 14opbr1st 5502 . . . . . . . . . . . . 13 ( Proj1 t, Proj2 t1st m, n Proj1 t = m, n)
7775, 76bitri 240 . . . . . . . . . . . 12 (t1st m, n Proj1 t = m, n)
7857, 74, 773bitr4i 268 . . . . . . . . . . 11 ((t(1st 1st )m t(2nd 1st )n) ↔ t1st m, n)
7978anbi1i 676 . . . . . . . . . 10 (((t(1st 1st )m t(2nd 1st )n) t2nd b) ↔ (t1st m, n t2nd b))
8055, 56, 793bitr2i 264 . . . . . . . . 9 ((t(1st 1st )m t((2nd 1st ) ⊗ 2nd )n, b) ↔ (t1st m, n t2nd b))
8139, 29opex 4589 . . . . . . . . . 10 m, n V
8281, 3op1st2nd 5791 . . . . . . . . 9 ((t1st m, n t2nd b) ↔ t = m, n, b)
8353, 80, 823bitri 262 . . . . . . . 8 (t((1st 1st ) ⊗ ((2nd 1st ) ⊗ 2nd ))m, n, bt = m, n, b)
8483rexbii 2640 . . . . . . 7 (t AddC t((1st 1st ) ⊗ ((2nd 1st ) ⊗ 2nd ))m, n, bt AddC t = m, n, b)
8552, 84bitri 240 . . . . . 6 (m, n, b (((1st 1st ) ⊗ ((2nd 1st ) ⊗ 2nd )) “ AddC ) ↔ t AddC t = m, n, b)
86 df-br 4641 . . . . . . 7 (m, n AddC bm, n, b AddC )
87 risset 2662 . . . . . . 7 (m, n, b AddCt AddC t = m, n, b)
8886, 87bitr2i 241 . . . . . 6 (t AddC t = m, n, bm, n AddC b)
8939, 29braddcfn 5827 . . . . . . 7 (m, n AddC b ↔ (m +c n) = b)
90 eqcom 2355 . . . . . . 7 ((m +c n) = bb = (m +c n))
9189, 90bitri 240 . . . . . 6 (m, n AddC bb = (m +c n))
9285, 88, 913bitri 262 . . . . 5 (m, n, b (((1st 1st ) ⊗ ((2nd 1st ) ⊗ 2nd )) “ AddC ) ↔ b = (m +c n))
9351, 92anbi12i 678 . . . 4 ((m, n, b Ins3 ((ran (1st ⊗ (1st ∩ 2nd )) ⊗ 2nd ) “ AddC ) m, n, b (((1st 1st ) ⊗ ((2nd 1st ) ⊗ 2nd )) “ AddC )) ↔ (m = (n +c n) b = (m +c n)))
942, 93bitri 240 . . 3 (m, n, b ( Ins3 ((ran (1st ⊗ (1st ∩ 2nd )) ⊗ 2nd ) “ AddC ) ∩ (((1st 1st ) ⊗ ((2nd 1st ) ⊗ 2nd )) “ AddC )) ↔ (m = (n +c n) b = (m +c n)))
9594exbii 1582 . 2 (mm, n, b ( Ins3 ((ran (1st ⊗ (1st ∩ 2nd )) ⊗ 2nd ) “ AddC ) ∩ (((1st 1st ) ⊗ ((2nd 1st ) ⊗ 2nd )) “ AddC )) ↔ m(m = (n +c n) b = (m +c n)))
9629, 29addcex 4395 . . 3 (n +c n) V
97 addceq1 4384 . . . 4 (m = (n +c n) → (m +c n) = ((n +c n) +c n))
9897eqeq2d 2364 . . 3 (m = (n +c n) → (b = (m +c n) ↔ b = ((n +c n) +c n)))
9996, 98ceqsexv 2895 . 2 (m(m = (n +c n) b = (m +c n)) ↔ b = ((n +c n) +c n))
1001, 95, 993bitri 262 1 (n, b ran ( Ins3 ((ran (1st ⊗ (1st ∩ 2nd )) ⊗ 2nd ) “ AddC ) ∩ (((1st 1st ) ⊗ ((2nd 1st ) ⊗ 2nd )) “ AddC )) ↔ b = ((n +c n) +c n))
Colors of variables: wff setvar class
Syntax hints:  wb 176   wa 358  wex 1541   = wceq 1642   wcel 1710  wrex 2616  cin 3209   +c cplc 4376  cop 4562   Proj1 cproj1 4564   Proj2 cproj2 4565   class class class wbr 4640  1st c1st 4718   ccom 4722  cima 4723  ccnv 4772  ran crn 4774  2nd c2nd 4784  ctxp 5736   AddC caddcfn 5746   Ins3 cins3 5752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-csb 3138  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-iun 3972  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-1st 4724  df-co 4727  df-ima 4728  df-id 4768  df-xp 4785  df-cnv 4786  df-rn 4787  df-dm 4788  df-res 4789  df-fun 4790  df-fn 4791  df-f 4792  df-fo 4794  df-fv 4796  df-2nd 4798  df-ov 5527  df-oprab 5529  df-mpt 5653  df-mpt2 5655  df-txp 5737  df-addcfn 5747  df-ins3 5753
This theorem is referenced by:  nncdiv3lem2  6277  nnc3n3p1  6279
  Copyright terms: Public domain W3C validator