NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  expt GIF version

Theorem expt 148
Description: Exportation theorem expressed with primitive connectives. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
expt ((¬ (φ → ¬ ψ) → χ) → (φ → (ψχ)))

Proof of Theorem expt
StepHypRef Expression
1 pm3.2im 137 . . 3 (φ → (ψ → ¬ (φ → ¬ ψ)))
21imim1d 69 . 2 (φ → ((¬ (φ → ¬ ψ) → χ) → (ψχ)))
32com12 27 1 ((¬ (φ → ¬ ψ) → χ) → (φ → (ψχ)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator