NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  pm3.2im GIF version

Theorem pm3.2im 137
Description: Theorem *3.2 of [WhiteheadRussell] p. 111, expressed with primitive connectives. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Josh Purinton, 29-Dec-2000.)
Assertion
Ref Expression
pm3.2im (φ → (ψ → ¬ (φ → ¬ ψ)))

Proof of Theorem pm3.2im
StepHypRef Expression
1 pm2.27 35 . 2 (φ → ((φ → ¬ ψ) → ¬ ψ))
21con2d 107 1 (φ → (ψ → ¬ (φ → ¬ ψ)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  jc  139  expi  141  expt  148
  Copyright terms: Public domain W3C validator