NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  falortru GIF version

Theorem falortru 1342
Description: A identity. (Contributed by Anthony Hart, 22-Oct-2010.)
Assertion
Ref Expression
falortru (( ⊥ ⊤ ) ↔ ⊤ )

Proof of Theorem falortru
StepHypRef Expression
1 tru 1321 . . 3
21olci 380 . 2 ( ⊥ ⊤ )
32bitru 1326 1 (( ⊥ ⊤ ) ↔ ⊤ )
Colors of variables: wff setvar class
Syntax hints:  wb 176   wo 357  wtru 1316  wfal 1317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-or 359  df-tru 1319
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator