NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  bitru GIF version

Theorem bitru 1326
Description: A theorem is equivalent to truth. (Contributed by Mario Carneiro, 9-May-2015.)
Hypothesis
Ref Expression
bitru.1 φ
Assertion
Ref Expression
bitru (φ ↔ ⊤ )

Proof of Theorem bitru
StepHypRef Expression
1 bitru.1 . 2 φ
2 tru 1321 . 2
31, 22th 230 1 (φ ↔ ⊤ )
Colors of variables: wff setvar class
Syntax hints:  wb 176  wtru 1316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-tru 1319
This theorem is referenced by:  truorfal  1341  falortru  1342  truimtru  1344  falimtru  1346  falimfal  1347  notfal  1349  trubitru  1350  falbifal  1353
  Copyright terms: Public domain W3C validator