NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  jarr GIF version

Theorem jarr 91
Description: Elimination of a nested antecedent as a kind of reversal of inference ja 153. (Contributed by Wolf Lammen, 9-May-2013.)
Assertion
Ref Expression
jarr (((φψ) → χ) → (ψχ))

Proof of Theorem jarr
StepHypRef Expression
1 ax-1 6 . 2 (ψ → (φψ))
21imim1i 54 1 (((φψ) → χ) → (ψχ))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  loolinALT  95  loowoz  96
  Copyright terms: Public domain W3C validator