New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ja | GIF version |
Description: Inference joining the antecedents of two premises. (Contributed by NM, 5-Aug-1993.) (Proof shortened by O'Cat, 19-Feb-2008.) |
Ref | Expression |
---|---|
ja.1 | ⊢ (¬ φ → χ) |
ja.2 | ⊢ (ψ → χ) |
Ref | Expression |
---|---|
ja | ⊢ ((φ → ψ) → χ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ja.2 | . . 3 ⊢ (ψ → χ) | |
2 | 1 | imim2i 13 | . 2 ⊢ ((φ → ψ) → (φ → χ)) |
3 | ja.1 | . 2 ⊢ (¬ φ → χ) | |
4 | 2, 3 | pm2.61d1 151 | 1 ⊢ ((φ → ψ) → χ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: jad 154 pm2.61i 156 pm2.01 160 peirce 172 loolin 173 pm2.74 819 oibabs 851 pm5.71 902 dfnot 1332 meredith 1404 tbw-bijust 1463 tbw-negdf 1464 merco1 1478 19.38 1794 hbimOLD 1818 a16g 1945 sbi2 2064 ax46 2162 ax467 2169 mo2 2233 elab3gf 2991 r19.2zb 3641 iununi 4051 |
Copyright terms: Public domain | W3C validator |