NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  merlem2 GIF version

Theorem merlem2 1408
Description: Step 4 of Meredith's proof of Lukasiewicz axioms from his sole axiom. (Contributed by NM, 14-Dec-2002.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
merlem2 (((φφ) → χ) → (θχ))

Proof of Theorem merlem2
StepHypRef Expression
1 merlem1 1407 . 2 ((((χχ) → (¬ φ → ¬ θ)) → φ) → (φφ))
2 ax-meredith 1406 . 2 (((((χχ) → (¬ φ → ¬ θ)) → φ) → (φφ)) → (((φφ) → χ) → (θχ)))
31, 2ax-mp 5 1 (((φφ) → χ) → (θχ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-meredith 1406
This theorem is referenced by:  merlem3  1409  merlem12  1418
  Copyright terms: Public domain W3C validator