| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > merlem1 | GIF version | ||
| Description: Step 3 of Meredith's proof of Lukasiewicz axioms from his sole axiom. (The step numbers refer to Meredith's original paper.) (Contributed by NM, 14-Dec-2002.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| merlem1 | ⊢ (((χ → (¬ φ → ψ)) → τ) → (φ → τ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-meredith 1406 | . . 3 ⊢ (((((¬ φ → ψ) → (¬ (¬ τ → ¬ χ) → ¬ ¬ (¬ φ → ψ))) → (¬ τ → ¬ χ)) → τ) → ((τ → ¬ φ) → (¬ (¬ φ → ψ) → ¬ φ))) | |
| 2 | ax-meredith 1406 | . . 3 ⊢ ((((((¬ φ → ψ) → (¬ (¬ τ → ¬ χ) → ¬ ¬ (¬ φ → ψ))) → (¬ τ → ¬ χ)) → τ) → ((τ → ¬ φ) → (¬ (¬ φ → ψ) → ¬ φ))) → ((((τ → ¬ φ) → (¬ (¬ φ → ψ) → ¬ φ)) → (¬ φ → ψ)) → (χ → (¬ φ → ψ)))) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ((((τ → ¬ φ) → (¬ (¬ φ → ψ) → ¬ φ)) → (¬ φ → ψ)) → (χ → (¬ φ → ψ))) |
| 4 | ax-meredith 1406 | . 2 ⊢ (((((τ → ¬ φ) → (¬ (¬ φ → ψ) → ¬ φ)) → (¬ φ → ψ)) → (χ → (¬ φ → ψ))) → (((χ → (¬ φ → ψ)) → τ) → (φ → τ))) | |
| 5 | 3, 4 | ax-mp 5 | 1 ⊢ (((χ → (¬ φ → ψ)) → τ) → (φ → τ)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-meredith 1406 |
| This theorem is referenced by: merlem2 1408 merlem5 1411 luk-3 1422 |
| Copyright terms: Public domain | W3C validator |