NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  merlem8 GIF version

Theorem merlem8 1414
Description: Step 15 of Meredith's proof of Lukasiewicz axioms from his sole axiom. (Contributed by NM, 22-Dec-2002.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
merlem8 (((ψχ) → θ) → (((χτ) → (¬ θ → ¬ ψ)) → θ))

Proof of Theorem merlem8
StepHypRef Expression
1 ax-meredith 1406 . 2 (((((φφ) → (¬ φ → ¬ φ)) → φ) → φ) → ((φφ) → (φφ)))
2 merlem7 1413 . 2 ((((((φφ) → (¬ φ → ¬ φ)) → φ) → φ) → ((φφ) → (φφ))) → (((ψχ) → θ) → (((χτ) → (¬ θ → ¬ ψ)) → θ)))
31, 2ax-mp 5 1 (((ψχ) → θ) → (((χτ) → (¬ θ → ¬ ψ)) → θ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-meredith 1406
This theorem is referenced by:  merlem9  1415
  Copyright terms: Public domain W3C validator