Proof of Theorem merlem9
Step | Hyp | Ref
| Expression |
1 | | merlem6 1412 |
. . . 4
⊢ ((θ → (ψ → τ)) → (((χ → (θ → (ψ → τ))) → ¬ η) → (¬ ψ → ¬ η))) |
2 | | merlem8 1414 |
. . . 4
⊢ (((θ → (ψ → τ)) → (((χ → (θ → (ψ → τ))) → ¬ η) → (¬ ψ → ¬ η))) → ((((ψ → τ) → (¬ (¬ (((χ → (θ → (ψ → τ))) → ¬ η) → (¬ ψ → ¬ η)) → ¬ θ) → ¬ φ)) → (¬ (((χ → (θ → (ψ → τ))) → ¬ η) → (¬ ψ → ¬ η)) → ¬ θ)) → (((χ → (θ → (ψ → τ))) → ¬ η) → (¬ ψ → ¬ η)))) |
3 | 1, 2 | ax-mp 5 |
. . 3
⊢ ((((ψ → τ) → (¬ (¬ (((χ → (θ → (ψ → τ))) → ¬ η) → (¬ ψ → ¬ η)) → ¬ θ) → ¬ φ)) → (¬ (((χ → (θ → (ψ → τ))) → ¬ η) → (¬ ψ → ¬ η)) → ¬ θ)) → (((χ → (θ → (ψ → τ))) → ¬ η) → (¬ ψ → ¬ η))) |
4 | | ax-meredith 1406 |
. . 3
⊢ (((((ψ → τ) → (¬ (¬ (((χ → (θ → (ψ → τ))) → ¬ η) → (¬ ψ → ¬ η)) → ¬ θ) → ¬ φ)) → (¬ (((χ → (θ → (ψ → τ))) → ¬ η) → (¬ ψ → ¬ η)) → ¬ θ)) → (((χ → (θ → (ψ → τ))) → ¬ η) → (¬ ψ → ¬ η))) → (((((χ → (θ → (ψ → τ))) → ¬ η) → (¬ ψ → ¬ η)) → ψ) → (φ → ψ))) |
5 | 3, 4 | ax-mp 5 |
. 2
⊢ (((((χ → (θ → (ψ → τ))) → ¬ η) → (¬ ψ → ¬ η)) → ψ) → (φ → ψ)) |
6 | | ax-meredith 1406 |
. 2
⊢ ((((((χ → (θ → (ψ → τ))) → ¬ η) → (¬ ψ → ¬ η)) → ψ) → (φ → ψ)) → (((φ → ψ) → (χ → (θ → (ψ → τ)))) → (η → (χ → (θ → (ψ → τ)))))) |
7 | 5, 6 | ax-mp 5 |
1
⊢ (((φ → ψ) → (χ → (θ → (ψ → τ)))) → (η → (χ → (θ → (ψ → τ))))) |