NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  mt2bi GIF version

Theorem mt2bi 328
Description: A false consequent falsifies an antecedent. (Contributed by NM, 19-Aug-1993.) (Proof shortened by Wolf Lammen, 12-Nov-2012.)
Hypothesis
Ref Expression
mt2bi.1 φ
Assertion
Ref Expression
mt2bi ψ ↔ (ψ → ¬ φ))

Proof of Theorem mt2bi
StepHypRef Expression
1 mt2bi.1 . . 3 φ
21a1bi 327 . 2 ψ ↔ (φ → ¬ ψ))
3 con2b 324 . 2 ((φ → ¬ ψ) ↔ (ψ → ¬ φ))
42, 3bitri 240 1 ψ ↔ (ψ → ¬ φ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator