New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > bitri | GIF version |
Description: An inference from transitive law for logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 13-Oct-2012.) |
Ref | Expression |
---|---|
bitri.1 | ⊢ (φ ↔ ψ) |
bitri.2 | ⊢ (ψ ↔ χ) |
Ref | Expression |
---|---|
bitri | ⊢ (φ ↔ χ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitri.1 | . . . 4 ⊢ (φ ↔ ψ) | |
2 | 1 | biimpi 186 | . . 3 ⊢ (φ → ψ) |
3 | bitri.2 | . . 3 ⊢ (ψ ↔ χ) | |
4 | 2, 3 | sylib 188 | . 2 ⊢ (φ → χ) |
5 | 3 | biimpri 197 | . . 3 ⊢ (χ → ψ) |
6 | 5, 1 | sylibr 203 | . 2 ⊢ (χ → φ) |
7 | 4, 6 | impbii 180 | 1 ⊢ (φ ↔ χ) |
Copyright terms: Public domain | W3C validator |