NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  mt4i GIF version

Theorem mt4i 131
Description: Modus tollens inference. (Contributed by Wolf Lammen, 12-May-2013.)
Hypotheses
Ref Expression
mt4i.1 χ
mt4i.2 (φ → (¬ ψ → ¬ χ))
Assertion
Ref Expression
mt4i (φψ)

Proof of Theorem mt4i
StepHypRef Expression
1 mt4i.1 . . 3 χ
21a1i 10 . 2 (φχ)
3 mt4i.2 . 2 (φ → (¬ ψ → ¬ χ))
42, 3mt4d 130 1 (φψ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator