NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  mt4d GIF version

Theorem mt4d 130
Description: Modus tollens deduction. (Contributed by NM, 9-Jun-2006.)
Hypotheses
Ref Expression
mt4d.1 (φψ)
mt4d.2 (φ → (¬ χ → ¬ ψ))
Assertion
Ref Expression
mt4d (φχ)

Proof of Theorem mt4d
StepHypRef Expression
1 mt4d.1 . 2 (φψ)
2 mt4d.2 . . 3 (φ → (¬ χ → ¬ ψ))
32con4d 97 . 2 (φ → (ψχ))
41, 3mpd 14 1 (φχ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  mt4i  131
  Copyright terms: Public domain W3C validator