NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  pm2.01d GIF version

Theorem pm2.01d 161
Description: Deduction based on reductio ad absurdum. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Wolf Lammen, 5-Mar-2013.)
Hypothesis
Ref Expression
pm2.01d.1 (φ → (ψ → ¬ ψ))
Assertion
Ref Expression
pm2.01d (φ → ¬ ψ)

Proof of Theorem pm2.01d
StepHypRef Expression
1 pm2.01d.1 . 2 (φ → (ψ → ¬ ψ))
2 id 19 . 2 ψ → ¬ ψ)
31, 2pm2.61d1 151 1 (φ → ¬ ψ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  pm2.65d  166  pm2.01da  429
  Copyright terms: Public domain W3C validator