NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  pm2.61d1 GIF version

Theorem pm2.61d1 151
Description: Inference eliminating an antecedent. (Contributed by NM, 15-Jul-2005.)
Hypotheses
Ref Expression
pm2.61d1.1 (φ → (ψχ))
pm2.61d1.2 ψχ)
Assertion
Ref Expression
pm2.61d1 (φχ)

Proof of Theorem pm2.61d1
StepHypRef Expression
1 pm2.61d1.1 . 2 (φ → (ψχ))
2 pm2.61d1.2 . . 3 ψχ)
32a1i 10 . 2 (φ → (¬ ψχ))
41, 3pm2.61d 150 1 (φχ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  ja  153  pm2.61nii  158  pm2.01d  161  ax10lem2  1937  mo  2226  2mo  2282  mosubopt  4612  funfv  5375  fvmptnf  5723
  Copyright terms: Public domain W3C validator