NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  pm2.21fal GIF version

Theorem pm2.21fal 1335
Description: If a wff and its negation are provable, then falsum is provable. (Contributed by Mario Carneiro, 9-Feb-2017.)
Hypotheses
Ref Expression
pm2.21fal.1 (φψ)
pm2.21fal.2 (φ → ¬ ψ)
Assertion
Ref Expression
pm2.21fal (φ → ⊥ )

Proof of Theorem pm2.21fal
StepHypRef Expression
1 pm2.21fal.1 . 2 (φψ)
2 pm2.21fal.2 . 2 (φ → ¬ ψ)
31, 2pm2.21dd 99 1 (φ → ⊥ )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wfal 1317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator