New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > efald | GIF version |
Description: Deduction based on reductio ad absurdum. (Contributed by Mario Carneiro, 9-Feb-2017.) |
Ref | Expression |
---|---|
efald.1 | ⊢ ((φ ∧ ¬ ψ) → ⊥ ) |
Ref | Expression |
---|---|
efald | ⊢ (φ → ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | efald.1 | . . 3 ⊢ ((φ ∧ ¬ ψ) → ⊥ ) | |
2 | 1 | inegd 1333 | . 2 ⊢ (φ → ¬ ¬ ψ) |
3 | 2 | notnotrd 105 | 1 ⊢ (φ → ψ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 358 ⊥ wfal 1317 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-fal 1320 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |