| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > pm2.24 | GIF version | ||
| Description: Theorem *2.24 of [WhiteheadRussell] p. 104. (Contributed by NM, 3-Jan-2005.) | 
| Ref | Expression | 
|---|---|
| pm2.24 | ⊢ (φ → (¬ φ → ψ)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pm2.21 100 | . 2 ⊢ (¬ φ → (φ → ψ)) | |
| 2 | 1 | com12 27 | 1 ⊢ (φ → (¬ φ → ψ)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem is referenced by: pm4.81 355 orc 374 pm2.82 825 dedlema 920 | 
| Copyright terms: Public domain | W3C validator |