| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > pm2.82 | GIF version | ||
| Description: Theorem *2.82 of [WhiteheadRussell] p. 108. (Contributed by NM, 3-Jan-2005.) | 
| Ref | Expression | 
|---|---|
| pm2.82 | ⊢ (((φ ∨ ψ) ∨ χ) → (((φ ∨ ¬ χ) ∨ θ) → ((φ ∨ ψ) ∨ θ))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ax-1 6 | . . 3 ⊢ ((φ ∨ ψ) → ((φ ∨ ¬ χ) → (φ ∨ ψ))) | |
| 2 | pm2.24 101 | . . . 4 ⊢ (χ → (¬ χ → ψ)) | |
| 3 | 2 | orim2d 813 | . . 3 ⊢ (χ → ((φ ∨ ¬ χ) → (φ ∨ ψ))) | 
| 4 | 1, 3 | jaoi 368 | . 2 ⊢ (((φ ∨ ψ) ∨ χ) → ((φ ∨ ¬ χ) → (φ ∨ ψ))) | 
| 5 | 4 | orim1d 812 | 1 ⊢ (((φ ∨ ψ) ∨ χ) → (((φ ∨ ¬ χ) ∨ θ) → ((φ ∨ ψ) ∨ θ))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 357 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |