New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > pm2.82 | GIF version |
Description: Theorem *2.82 of [WhiteheadRussell] p. 108. (Contributed by NM, 3-Jan-2005.) |
Ref | Expression |
---|---|
pm2.82 | ⊢ (((φ ∨ ψ) ∨ χ) → (((φ ∨ ¬ χ) ∨ θ) → ((φ ∨ ψ) ∨ θ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1 6 | . . 3 ⊢ ((φ ∨ ψ) → ((φ ∨ ¬ χ) → (φ ∨ ψ))) | |
2 | pm2.24 101 | . . . 4 ⊢ (χ → (¬ χ → ψ)) | |
3 | 2 | orim2d 813 | . . 3 ⊢ (χ → ((φ ∨ ¬ χ) → (φ ∨ ψ))) |
4 | 1, 3 | jaoi 368 | . 2 ⊢ (((φ ∨ ψ) ∨ χ) → ((φ ∨ ¬ χ) → (φ ∨ ψ))) |
5 | 4 | orim1d 812 | 1 ⊢ (((φ ∨ ψ) ∨ χ) → (((φ ∨ ¬ χ) ∨ θ) → ((φ ∨ ψ) ∨ θ))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |