NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  pm2.38 GIF version

Theorem pm2.38 815
Description: Theorem *2.38 of [WhiteheadRussell] p. 105. (Contributed by NM, 6-Mar-2008.)
Assertion
Ref Expression
pm2.38 ((ψχ) → ((ψ φ) → (χ φ)))

Proof of Theorem pm2.38
StepHypRef Expression
1 id 19 . 2 ((ψχ) → (ψχ))
21orim1d 812 1 ((ψχ) → ((ψ φ) → (χ φ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wo 357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360
This theorem is referenced by:  pm2.36  816  pm2.37  817
  Copyright terms: Public domain W3C validator