NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  pm2.43b GIF version

Theorem pm2.43b 46
Description: Inference absorbing redundant antecedent. (Contributed by NM, 31-Oct-1995.)
Hypothesis
Ref Expression
pm2.43b.1 (ψ → (φ → (ψχ)))
Assertion
Ref Expression
pm2.43b (φ → (ψχ))

Proof of Theorem pm2.43b
StepHypRef Expression
1 pm2.43b.1 . . 3 (ψ → (φ → (ψχ)))
21pm2.43a 45 . 2 (ψ → (φχ))
32com12 27 1 (φ → (ψχ))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  ncfinlower  4484  funfvima  5460
  Copyright terms: Public domain W3C validator